hdu1043

8数码,无解情况为逆序数为奇数,用康托展开压缩成一个int来判重

这个是多组输入

所以我们不能来一组搜一次

这里给出bfs和A*

A*的话,你可以使用曼哈顿距离,当然,由于不用最少步数,可以用3倍曼哈顿距离加速

IDA*的话用曼哈顿距离就好了

bfs

我们从终点反向搜索所有的点,然后来一组搜一组

#include
#include
#include
#include
using namespace std;
const char direct[4] = { 'd','u','r','l' };
const int dir[4][2] = { {-1,0},{1,0},{0,-1},{0,1} }, N = 362880;
vector path[N];
bool visit[N];
const int aim = 46233;
const int n = 9;
//阶乘
const int fac[n] = { 1,1,2,6,24,120,720,5040,40320 };
//康托展开
int cantor(int s[]) {
    int result = 0, cnt = 0;
    for (int i = 0; i < n - 1; ++i) {
        cnt = 0;
        for (int j = i + 1; j < n; ++j) {
            if (s[i] > s[j])++cnt;
        }
        result += fac[n - 1 - i] * cnt;
    }
    return result;
}
void reverseCantor(int hash, int s[], int &space) {
    bool visited[n] = {};
    int temp;
    for (int i = 0; i < n; ++i) {
        temp = hash / fac[n - 1 - i];
        for (int j = 0; j < n; ++j) {
            if (!visited[j]) {
                if (temp == 0) {
                    s[i] = j;
                    if (j == 0)space = i;
                    visited[j] = true;
                    break;
                }
                --temp;
            }
        }
        hash %= fac[n - 1 - i];
    }
}
//从终点逆向搜索,找到所有的可到达局面
void bfs() {
    queue q;
    q.push(aim);
    visit[aim] = true;
    int state[n], space;
    while (!q.empty()) {
        int preHash = q.front();
        q.pop();
        reverseCantor(preHash, state, space);
        for (int i = 0; i < 4; ++i) {
            int tx = space / 3 + dir[i][0];
            int ty = space % 3 + dir[i][1];
            if (tx < 0 || tx>2 || ty < 0 || ty>2)continue;
            int tz = tx * 3 + ty;
            state[space] = state[tz];
            state[tz] = 0;
            int hash = cantor(state);
            if (!visit[hash]) {
                visit[hash] = true;
                q.push(hash);
                path[hash] = path[preHash];
                path[hash].push_back(direct[i]);
            }
            state[tz] = state[space];
            state[space] = 0;
        }
    }
}
int main() {
    bfs();
    char x;
    int a[n];
    while (~scanf(" %c", &x)) {
        if (x == 'x')a[0] = 0;
        else a[0] = x - '0';
        for (int i = 1; i < n; ++i) {
            scanf(" %c", &x);
            if (x == 'x')a[i] = 0;
            else a[i] = x - '0';
        }
        int hash = cantor(a);
        if (visit[hash]) {
            for (int i = path[hash].size() - 1; i >= 0; --i)printf("%c", path[hash][i]);
            printf("\n");
        }
        else printf("unsolvable\n");
    }
    return 0;
}

A*

h(x)用的是曼哈顿距离

#include
#include
#include
#include
#include
using namespace std;
const char direct[4] = { 'u','d','l','r' };
const int dir[4][2] = { {-1,0},{1,0},{0,-1},{0,1} }, N = 362880;
const int aim = 46233;
const int n = 9;
bool visit[N];
int parent[N];
char step[N];
int goal_state[9][2] = {
	{0, 0}, {0, 1}, {0, 2},
	{1, 0}, {1, 1}, {1, 2},
	{2, 0}, {2, 1}, {2, 2}
};
//阶乘
const int fac[n] = { 1,1,2,6,24,120,720,5040,40320 };
//康托展开
int cantor(int s[]) {
	int result = 0, cnt = 0;
	for (int i = 0; i < n - 1; ++i) {
		cnt = 0;
		for (int j = i + 1; j < n; ++j) {
			if (s[i] > s[j])++cnt;
		}
		result += fac[n - 1 - i] * cnt;
	}
	return result;
}
//逆康托展开
void reverseCantor(int hash, int s[], int &space) {
	bool visited[n] = {};
	int temp;
	for (int i = 0; i < n; ++i) {
		temp = hash / fac[n - 1 - i];
		for (int j = 0; j < n; ++j) {
			if (!visited[j]) {
				if (temp == 0) {
					s[i] = j;
					if (j == 0)space = i;
					visited[j] = true;
					break;
				}
				--temp;
			}
		}
		hash %= fac[8 - i];
	}
}
//f=g+h
int g[N];
int h(int s[]) {
	int k, result = 0;
	for (int i = 0; i < 3; ++i) {
		for (int j = 0; j < 3; ++j) {
			k = i * 3 + j;
			if (s[k] == 0)continue;
			result += abs(1.0*(i - goal_state[s[k] - 1][0])) + abs(1.0*(j - goal_state[s[k] - 1][1]));
		}
	}
	return result;
}
void printPath() {
	char queue[31];
	int t = 0;
	int c = aim;
	while (parent[c] != -1) {
		queue[t] = step[c];
		++t;
		c = parent[c];
	}
	for (int i = t - 1; i >= 0; --i)printf("%c", queue[i]);
	printf("\n");
}
class Chess {
public:
	int hash, f;
	Chess(const int &hash, const int &f) :hash(hash), f(f) {}
	bool operator <(const Chess &t)const {
		if (f == t.f)return g[hash] > g[t.hash];
		return f > t.f;
	}
};
//A*算法
void A_star(int start,int f) {
	priority_queue q;
	q.push(Chess(start, f));
	int preHash, hash, state[n], space, preH;
	while (!q.empty()) {
		//取出节点
		Chess preChess = q.top();
		preHash = preChess.hash;
		if (preHash == aim) {
			printPath();
			return;
		}
		q.pop();
		preH = preChess.f - g[preHash];
		reverseCantor(preHash, state, space);
		for (int i = 0; i < 4; ++i) {
			int tx = space / 3 + dir[i][0];
			int ty = space % 3 + dir[i][1];
			if (tx < 0 || tx>2 || ty < 0 || ty>2)continue;
			int tz = 3 * tx + ty;
			state[space] = state[tz];
			state[tz] = 0;
			hash = cantor(state);
			//没访问过
			if (!visit[hash]) {
				step[hash] = direct[i];
				g[hash] = g[preHash] + 1;
				visit[hash] = true;
				parent[hash] = preHash;
				q.push(Chess(hash, g[hash] + h(state)));
			}
			//访问过了,但是从preHash走一步到hash比直接走到hash更短
			else if (g[preHash] + 1 < g[hash]) {
				step[hash] = direct[i];
				g[hash] = g[preHash] + 1;
				parent[hash] = preHash;
				q.push(Chess(hash, g[hash] + preH));
			}
			state[tz] = state[space];
			state[space] = 0;
		}
	}
	printf("unsolvable\n");
}
int getInv(int s[]) {
	int cnt = 0;
	for (int i = 1; i < n; ++i) {
		if (s[i] == 0)continue;
		for (int j = 0; j < i; ++j) {
			if (s[j] == 0)continue;
			if (s[i] < s[j])
				++cnt;
		}
	}
	return cnt & 1;
}
int main() {
	char x;
	int a[n];
	while (~scanf(" %c", &x)) {
		if (x == 'x')a[0] = 0;
		else a[0] = x - '0';
		for (int i = 1; i < n; ++i) {
			scanf(" %c", &x);
			if (x == 'x')a[i] = 0;
			else a[i] = x - '0';
		}
		if (getInv(a) == 1) {
			printf("unsolvable\n");
			continue;
		}
		int hash = cantor(a);
		memset(visit, 0, sizeof(visit));
		memset(g, 0, sizeof(g));
		visit[hash] = true;
		parent[hash] = -1;
		g[hash] = 0;
		A_star(hash, h(a));
	}
	return 0;
}

IDA*

#include
#include
using namespace std;
const char direct[4] = { 'u','d','l','r' };
const int dir[4][2] = { {-1,0},{1,0},{0,-1},{0,1} };
const int n = 9;
bool flag;
int a[n];
char step[32];
int maxDeep;
int goal_state[9][2] = {
	{0, 0}, {0, 1}, {0, 2},
	{1, 0}, {1, 1}, {1, 2},
	{2, 0}, {2, 1}, {2, 2}
};
int abs(int a, int b) {
	if (a > b)return a - b;
	return b - a;
}
int h() {
	int k, result = 0;
	for (int i = 0; i < 3; ++i) {
		for (int j = 0; j < 3; ++j) {
			k = i * 3 + j;
			if (a[k] == 0)continue;
			result += abs(i, goal_state[a[k] - 1][0]) + abs(j, goal_state[a[k] - 1][1]);
		}
	}
	return result;
}
int getInv() {
	int cnt = 0;
	for (int i = 1; i < n; ++i) {
		if (a[i] == 0)continue;
		for (int j = 0; j < i; ++j) {
			if (a[j] == 0)continue;
			if (a[i] < a[j])
				++cnt;
		}
	}
	return cnt & 1;
}
bool reverse(char a, char b) {
	return a == 'u'&& b == 'd'
		|| a == 'd'&& b == 'u'
		|| a == 'l'&& b == 'r'
		|| a == 'r'&&b == 'l';
}
int dfs(int deep, int space) {
	int t = h(), f = deep + t;
	if (f > maxDeep)return f;
	if (t == 0) {
		flag = true;
		return f;
	}
	int nextBound = 32;
	for (int i = 0; i < 4; ++i) {
		if (deep > 0 && reverse(step[deep - 1], direct[i]))continue;
		int tx = space / 3 + dir[i][0];
		int ty = space % 3 + dir[i][1];
		if (tx < 0 || tx>2 || ty < 0 || ty>2)continue;
		int tz = 3 * tx + ty;
		a[space] = a[tz];
		a[tz] = 0;
		step[deep] = direct[i];
		f = dfs(deep + 1, tz);
		if (flag)return f;
		if (f < nextBound)nextBound = f;
		a[tz] = a[space];
		a[space] = 0;
	}
	return nextBound;
}
int main() {
	char x;
	int space;
	while (~scanf(" %c", &x)) {
		if (x == 'x') {
			a[0] = 0;
			space = 0;
		}
		else a[0] = x - '0';
		for (int i = 1; i < n; ++i) {
			scanf(" %c", &x);
			if (x == 'x') {
				a[i] = 0;
				space = i;
			}
			else a[i] = x - '0';
		}
		if (getInv() == 1) {
			printf("unsolvable\n");
		}
		else {
			maxDeep = h();
			while (true) {
				flag = false;
				maxDeep = dfs(0, space);
				if (flag) {
					step[maxDeep] = '\0';
					printf("%s\n", step);
					break;
				}
			}

		}
	}
	return 0;
}

 

你可能感兴趣的:(hdu1043)