- 【漫话机器学习系列】129.主成分分析(Principal Component Analysis,PCA)
IT古董
漫话机器学习系列专辑机器学习人工智能
主成分分析(PCA):降维与特征提取的强大工具1.什么是主成分分析(PCA)?主成分分析(PrincipalComponentAnalysis,PCA)是一种常见的数据降维技术,主要用于将高维数据投影到低维空间,同时尽可能保留数据的主要信息。PCA通过线性变换,将原始特征变量转换为一组新的变量,这些新变量被称为主成分(PrincipalComponents)。在这张图中,我们可以看到PCA的核心概
- PCA主成分分析降维算法及其可视化(附完整版代码)
Jason_Orton
算法机器学习数据挖掘人工智能matlab
一.PCA的介绍PCA(PrincipalComponentAnalysis)是一种数据降维技术,旨在将多维指标转换为少数几个综合指标。在统计学中,PCA是简化数据集的一种方法,通过线性变换将数据映射到新的坐标系中。在新的坐标系中,第一主成分捕获数据投影的最大方差,第二主成分捕获第二大方差,依此类推。主成分分析常用于减少数据集的维度,同时保留对方差贡献最大的特征。这是通过保留低阶主成分、忽略高阶主
- 《人工智能之高维数据降维算法:PCA与LDA深度剖析》
机器学习人工智能
在人工智能与机器学习蓬勃发展的当下,数据处理成为关键环节。高维数据在带来丰富信息的同时,也引入了计算复杂度高、过拟合风险增大以及数据稀疏性等难题。降维算法应运而生,它能将高维数据映射到低维空间,在减少维度的同时最大程度保留关键信息。主成分分析(PCA)与线性判别分析(LDA)作为两种常用的降维算法,在人工智能领域应用广泛。本文将深入探讨它们的原理。PCA:无监督的降维利器核心思想PCA基于最大方差
- 简化版奇异值分解(SVD)方法详解
DuHz
数理统计学知识机器学习人工智能算法信息与通信信号处理
简化版奇异值分解(SVD)方法详解奇异值分解(SVD)是一个强大的矩阵分解工具,广泛应用于数据降维、图像压缩、机器学习等领域。然而,对于大规模数据或高维矩阵,计算和存储的开销非常大,因此提出了多种简化版的SVD方法。这些简化版方法在保证解的精度的同时,能够显著减少计算量和内存占用。本文将详细介绍几种简化版SVD方法,包括经济型SVD、随机化SVD、增量SVD、分块SVD和偏最小二乘法(PLS),并
- 机器学习数学基础:21.特征值与特征向量
@心都
机器学习概率论人工智能
一、引言在现代科学与工程的众多领域中,线性代数扮演着举足轻重的角色。其中,特征值、特征向量以及相似对角化的概念和方法,不仅是线性代数理论体系的核心部分,更是解决实际问题的有力工具。无论是在物理学中描述系统的振动模式,还是在计算机科学里进行数据降维与图像处理,它们都发挥着关键作用。本教程将深入且全面地对这些内容展开讲解,旨在帮助读者透彻理解并熟练运用相关知识。二、基础知识准备(一)对角矩阵的高次幂计
- MATLAB主成分分析实战指南
Ready-Player
本文还有配套的精品资源,点击获取简介:主成分分析(PCA)是数据降维的一种技术,它通过转换原始数据到线性无关的主成分,降低数据复杂性,同时尽可能保留原始数据的方差信息。MATLAB提供强大的矩阵运算功能和内置函数,便于实现PCA。本文将详细介绍如何使用MATLAB进行PCA的每个步骤,包括数据预处理、计算协方差矩阵、提取特征向量和特征值、选择主成分、数据转换、结果可视化以及从主成分恢复原始数据。P
- 数据降维技术研究:Karhunen-Loève展开与快速傅里叶变换的理论基础及应用
人工智能机器学习python
在现代科学计算和数据分析领域,数据降维与压缩技术对于处理高维数据具有重要意义。本文主要探讨两种基础而重要的数学工具:Karhunen-Loève展开(KLE)和快速傅里叶变换(FFT)。通过分析这两种方法的理论基础和应用特点,阐述它们在数据降维中的优势和适用场景。Karhunen-Loève展开的理论与应用理论基础Karhunen-Loève展开是一种基于随机过程谱分解的降维方法。它通过构建最优正
- Python机器学习实战:主成分分析(PCA)的原理和实战操作
AI天才研究院
大数据AI人工智能AI大模型企业级应用开发实战计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Python机器学习实战:主成分分析(PCA)的原理和实战操作1.背景介绍1.1什么是主成分分析(PCA)?主成分分析(PrincipalComponentAnalysis,PCA)是一种常用的无监督学习算法,用于数据降维和特征提取。它通过线性变换将原始高维数据映射到低维空间,同时保留数据的主要特征和信息。PCA的目标是找到数据中最主要的方向(主成分),沿着这些方向对数据进行投影,从而实现降维。1
- pytorch实现主成分分析 (PCA):用于数据降维和特征提取
纠结哥_Shrek
pytorch人工智能python
使用PyTorch实现主成分分析(PCA)可以通过以下步骤进行:标准化数据:首先,需要对数据进行标准化处理,确保每个特征的均值为0,方差为1。计算协方差矩阵:计算数据的协方差矩阵,以捕捉特征之间的关系。特征值分解:对协方差矩阵进行特征值分解,获得主成分。选择主成分:根据特征值的大小选择前几个主成分,通常选择方差最大的主成分。转换数据:将数据投影到选定的主成分上,完成降维。例子代码:importto
- 降维算法:主成分分析
一个人在码代码的章鱼
数学建模机器学习概率论
主成分分析一种常用的数据分析技术,主要用于数据降维,在众多领域如统计学、机器学习、信号处理等都有广泛应用。主成分分析是一种通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量(即主成分)的方法。这些主成分按照方差从大到小排列,方差越大,包含的原始数据信息越多。通常会选取前几个方差较大的主成分,以达到在尽量保留原始数据信息的前提下降低数据维度的目的。它通过将多个指标转换为少数几个主成分,
- Python数据分析高频面试题及答案
闲人编程
程序员面试python数据分析面试题核心
目录1.基础知识2.数据处理3.数据可视化4.机器学习模型5.进阶问题6.数据清洗与预处理7.数据转换与操作8.时间序列分析9.高级数据分析技术10.数据降维与特征选择11.模型评估与优化12.数据操作与转换13.数据筛选与分析14.数据可视化与报告15.数据统计与分析16.高级数据处理以下是一些Python数据分析的高频核心面试题及其答案,涵盖了基础知识、数据1.基础知识问1:Python中列表
- 多维偏好分析及其在实际决策中的应用:基于PCA-KMeans的数据降维与模式识别方法
多维偏好分析(MultidimensionalPreferenceAnalysis,MPA)是一种在市场营销、心理学和公共政策等领域广泛应用的分析工具,用于研究多维度下的复杂偏好决策过程。在高维数据集中,当属性与偏好之间存在非线性关系或维度重叠时,偏好的理解和可视化呈现出显著的技术挑战。本文本将研究采用主成分分析(PrincipalComponentAnalysis,PCA)和K均值聚类算法对鸢尾
- 机器学习 流形数据降维:UMAP 降维算法
小嗷犬
Python机器学习#数据分析及可视化机器学习算法人工智能
✅作者简介:人工智能专业本科在读,喜欢计算机与编程,写博客记录自己的学习历程。个人主页:小嗷犬的个人主页个人网站:小嗷犬的技术小站个人信条:为天地立心,为生民立命,为往圣继绝学,为万世开太平。本文目录UMAP简介理论基础特点与优势应用场景在Python中使用UMAP安装umap-learn库使用UMAP可视化手写数字数据集UMAP简介UMAP(UniformManifoldApproximatio
- 亦菲喊你来学机器学习(20) --PCA数据降维
方世恩
机器学习人工智能深度学习python算法sklearn
文章目录PCA数据降维一、降维二、优缺点三、参数四、实例应用1.读取文件2.分离特征和目标变量3.使用PCA进行降维4.打印特征所占百分比和具体比例5.PCA降维后的数据6.划分数据集7.训练逻辑回归模型8.评估模型性能总结PCA数据降维主成分分析(PrincipalComponentAnalysis,PCA)是一种常用的数据降维技术,它可以在保留数据集中最重要的特征的同时,减少数据的维度。PCA
- Java中的数据降维技术:如何实现PCA和t-SNE
省赚客app开发者
javapython人工智能
Java中的数据降维技术:如何实现PCA和t-SNE大家好,我是微赚淘客系统3.0的小编,是个冬天不穿秋裤,天冷也要风度的程序猿!在这篇文章中,我们将探讨如何在Java中实现数据降维技术,特别是主成分分析(PCA)和t-SNE。这两种技术在数据预处理和可视化中非常重要,它们帮助我们将高维数据转换为低维数据,保留数据的主要特征。主成分分析(PCA)主成分分析(PCA)是一种线性降维技术,用于将数据从
- 2024 数学建模国赛 C 题模型及算法(无废话版)
不染53
数学建模数学建模算法python
目录写在开始需要掌握的数学模型/算法评价体系/评价类问题时间序列处理数据降维聚类问题(无监督)分类问题(有监督)集成学习(Bagging/Boosting)回归问题关联分析统计学方法/统计模型智能优化算法需要掌握的Python专业库需要掌握的软件/工具写在开始本人获2023年数学建模国赛C题国家级一等奖,备赛期间专攻C题。本文总结了在备赛期间总结的模型和算法,足以应对90%国赛C题中涉及到的问题。
- 主成分分析(PCA)附Python实现
不染53
数学建模数学建模python算法
主成分分析矩阵分解特征值和特征向量特征值分解奇异值分解主成分分析(PCA)Python实现主成分分析方法(PrincipalComponentAnalysis,PCA)是一种常用的数据分析方法。PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,将多个变量压缩为少数几个综合指标(称为主成分),是一种使用最广泛的数据降维算法。此外,由于主成分分析独特的性质,压缩之后的主成分之间线性无关,因此
- 鸟枪换炮,利用python3对球员做大数据降维(因子分析得分),为C罗找到合格僚机
刘悦的技术博客
原文转载自「刘悦的技术博客」https://v3u.cn/a_id_176众所周知,尤文图斯需要一座欧冠奖杯,C罗也还想再拿一座欧冠奖杯,为自己的荣誉簙上锦上添花。意甲霸主在意甲虽然风生水起,予取予求,但是在今年欧冠1/8决赛赛场上,被法甲球队里昂所淘汰,痛定思痛,球队解雇了主教练萨里,签约名宿皮尔洛,但是要想在欧冠赛场上夺冠,这还不够,球队还需要什么?没错,需要一名强力中锋,在正印中锋伊瓜因难堪
- DataCastle 员工离职预测 Baseline
小嗷犬
Python机器学习机器学习数据挖掘sklearn
✅作者简介:人工智能专业本科在读,喜欢计算机与编程,写博客记录自己的学习历程。个人主页:小嗷犬的个人主页个人网站:小嗷犬的技术小站个人信条:为天地立心,为生民立命,为往圣继绝学,为万世开太平。本文目录比赛介绍比赛链接赛题描述评分标准比赛数据数据下载数据说明Baseline导包数据读取数据缺失状况样本标签是否均衡打印类别特征类别特征编码特征衍生数据标准化数据降维特征选择不均衡样本处理模型调参XGBo
- Dataframe型数据分析技巧汇总
我叫杨傲天
学习笔记机器学习数据分析数据挖掘
Kaggle如何针对少量数据集比赛的打法。数据降维的几种方法HF.075|时间序列趋势性分析方法汇总机器学习必须了解的7种交叉验证方法(附代码)这个图!Python也能一键绘制了,而且样式更多..散点图,把散点图画出花来综述:机器学习中的模型评价、模型选择与算法选择!表格任务中的深度学习模型性能比较再见Onehot!KaggleMaster的上分神操作!特征重要性评估方法之排列重要性
- 数据降维方法介绍(十二)
科技小白不能再白了
第八种方法:自编码器降维姓名:何源学号:21011210073学院:通信工程学院转载:基于自编码网络AutoEncoder完成数据降维并且提取数据的本质特征【嵌牛导读】自编码器降维方法简介【嵌牛鼻子】自编码器【嵌牛提问】自编码器降维原理是什么?【嵌牛正文】数据降维的意思是什么?一维数据我们可以认为它是一个点,二维数据是一条线,三维数据是一个面,但四维数据我们就想象不到了,但这并不意味着不存在。对于
- 数据处理方法—— 7 种数据降维操作 !!
JOYCE_Leo16
Python数据降维python数据处理
文章目录数据降维1.主成分分析(PCA)2.线性判别分析(LDA)3.t-分布随机邻域嵌入(t-SNE)4.局部线性嵌入(LLE)5.多维缩放(MDS)6.奇异值分解(SVD)7.自动编码器(Autoencoders)总结数据降维数据降维是一种将高维数据转换为低纬数据的技术,同时尽量保留原始数据的重要信息。这对于处理大规模数据集非常有用,因为它有助于减少计算资源的需要,并提高算法的效率。以下是一些
- 特征工程:特征提取和降维-下
林浩杨
数据探索与可视化机器学习人工智能数据分析python算法
目录一、前言二、正文Ⅰ.流形学习Ⅱ.t-SNEⅢ.多维尺度分析三、结语一、前言通过上篇对线性与非线性的数据的特征提取和降维的学习之后,我们来介绍其他方法,分别有流行学习、多维尺度分析、t-SNE。二、正文Ⅰ.流形学习流形学习是借鉴拓扑流形的概念的一种降维的方法。用于数据降维,降到二维或者三维时可以对数据进行可视化。因为流形学习利用近邻的距离来计算高维空间的样本距离,所以近邻个数对其降维的结果影响甚
- 特征工程:特征提取和降维-上
林浩杨
数据探索与可视化机器学习人工智能机器学习算法python数据分析
目录一、前言二、正文Ⅰ.主成分分析Ⅱ.核主成分分析三、结语一、前言前面介绍的特征选择方法获得的特征,是从原始数据中抽取出来的,并没有对数据进行变换。而特征提取和降维,则是对原始数据的特征进行相应的数据变换,并且通常会选择比原始特征数量少的特征,同时达到数据降维的目的。常用的数据特征提取和降维的方法有主成分分析,核成分分析,流行学习,t-SNE,多维尺度分析等方法。二、正文fromsklearn.d
- 【PyTorch][chapter 14][李宏毅深度学习][Word Embedding]
明朝百晓生
深度学习pytorchembedding
前言:这是用于自然语言处理中数据降维的一种方案。我们希望用一个向量来表示每一个单词.有不同的方案目录:one-hotEncodingword-class词的上下文表示count-basedperdition-basedCBOWSkip-GramwordEmbedding词向量相似度一one-hotEncoding假设英文有10万个单词,那每个单词用1个10万维的one-hot编码表示。其中只有1个
- 机器学习系列——(六)数据降维
飞影铠甲
机器学习机器学习人工智能大数据
引言在机器学习领域,数据降维是一种常用的技术,旨在减少数据集的维度,同时保留尽可能多的有用信息。数据降维可以帮助我们解决高维数据带来的问题,提高模型的效率和准确性。本文将详细介绍机器学习中的数据降维方法和技术,以及其在实际应用中的重要性。一、概念数据降维是指通过对原始数据进行变换或压缩,将其映射到一个低维空间中,从而减少特征的数量。数据降维的目标主要包括以下几个方面:减少计算复杂性:高维数据可能导
- 主成分分析PCA、KPCA,贡献度计算,特征降维,散点图,从入门到精通,Matlab程序,一键运行!
预测及优化
matlab降维PCAKPCA贡献度特征选择
适用平台:Matlab2021及以上什么是数据降维:数据降维是指将高维度的数据映射到低维度的空间中,同时保留数据中的重要信息。这种降维的操作可以帮助我们更好地理解和处理数据,并且可以降低计算的复杂度,提高机器学习算法的效率和准确率。降维方法:PCA和KPCA都是降维技术,用于从高维数据中提取主要特征或进行非线性降维。下面将详细说明它们的原理和区别(附带程序结果)。主成分分析(PrincipalCo
- 单细胞scRNA-seq测序基础知识笔记
是土豆大叔啊!
AI4Science笔记数据分析
单细胞scRNA-seq测序基础知识笔记scRNA-seq技术scRNA-seq分析流程数据预处理聚类标准化数据筛选有用的数据数据降维聚类Clustering注释细胞类型scRNA数据分析结尾该笔记来源于B站up江湾青年以及CostaLab-BioinformaticsCourse关于scATAC-seq的请移步scRNA-seq技术首先是如何测序,上图瓶中有很多细胞,然后让这些细胞一个一个进入右
- 算法大览:24美赛深度总结与代码分享
小Z的科研日常
数学建模python
为协助参与美赛的同仁,本期我们特别对一系列相关算法进行深度总结。内容包括数据降维、聚类、论文写作、异常值检测、论文配图、图像相关算法以及机器学习自动化预测等多个主题,其中包含详实的案例和实用的代码示例。最后,祝大家取得好成绩!PS:关注公众号[小Z的科研日常],阅读号内原文免费获取[相关代码]。数据降维降维|基于PCA算法降维|基于KPCA算法【数据+代码】Lasso特征选择离散和连续数据的降维方
- 基于PCA算法的人脸识别介绍
Clearlovekui9
学号:17020110019姓名:高少魁【嵌牛导读】PCA算法作为一种经典的数据降维算法,可以对数据进行有效的降维。降维具有如下一些优点:使得数据集更易使用、降低算法的计算开销、去除噪声、使得结果容易理解。本文对PCA算法原理进行一些初步的介绍,之后使用matlab工具设计算法,使用ORL人脸数据库,完成一个简单的人脸识别功能。该算法识别准确率达到了90%以上。【嵌牛鼻子】数据降维人脸识别数据挖掘
- Java常用排序算法/程序员必须掌握的8大排序算法
cugfy
java
分类:
1)插入排序(直接插入排序、希尔排序)
2)交换排序(冒泡排序、快速排序)
3)选择排序(直接选择排序、堆排序)
4)归并排序
5)分配排序(基数排序)
所需辅助空间最多:归并排序
所需辅助空间最少:堆排序
平均速度最快:快速排序
不稳定:快速排序,希尔排序,堆排序。
先来看看8种排序之间的关系:
1.直接插入排序
(1
- 【Spark102】Spark存储模块BlockManager剖析
bit1129
manager
Spark围绕着BlockManager构建了存储模块,包括RDD,Shuffle,Broadcast的存储都使用了BlockManager。而BlockManager在实现上是一个针对每个应用的Master/Executor结构,即Driver上BlockManager充当了Master角色,而各个Slave上(具体到应用范围,就是Executor)的BlockManager充当了Slave角色
- linux 查看端口被占用情况详解
daizj
linux端口占用netstatlsof
经常在启动一个程序会碰到端口被占用,这里讲一下怎么查看端口是否被占用,及哪个程序占用,怎么Kill掉已占用端口的程序
1、lsof -i:port
port为端口号
[root@slave /data/spark-1.4.0-bin-cdh4]# lsof -i:8080
COMMAND PID USER FD TY
- Hosts文件使用
周凡杨
hostslocahost
一切都要从localhost说起,经常在tomcat容器起动后,访问页面时输入http://localhost:8088/index.jsp,大家都知道localhost代表本机地址,如果本机IP是10.10.134.21,那就相当于http://10.10.134.21:8088/index.jsp,有时候也会看到http: 127.0.0.1:
- java excel工具
g21121
Java excel
直接上代码,一看就懂,利用的是jxl:
import java.io.File;
import java.io.IOException;
import jxl.Cell;
import jxl.Sheet;
import jxl.Workbook;
import jxl.read.biff.BiffException;
import jxl.write.Label;
import
- web报表工具finereport常用函数的用法总结(数组函数)
老A不折腾
finereportweb报表函数总结
ADD2ARRAY
ADDARRAY(array,insertArray, start):在数组第start个位置插入insertArray中的所有元素,再返回该数组。
示例:
ADDARRAY([3,4, 1, 5, 7], [23, 43, 22], 3)返回[3, 4, 23, 43, 22, 1, 5, 7].
ADDARRAY([3,4, 1, 5, 7], "测试&q
- 游戏服务器网络带宽负载计算
墙头上一根草
服务器
家庭所安装的4M,8M宽带。其中M是指,Mbits/S
其中要提前说明的是:
8bits = 1Byte
即8位等于1字节。我们硬盘大小50G。意思是50*1024M字节,约为 50000多字节。但是网宽是以“位”为单位的,所以,8Mbits就是1M字节。是容积体积的单位。
8Mbits/s后面的S是秒。8Mbits/s意思是 每秒8M位,即每秒1M字节。
我是在计算我们网络流量时想到的
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
Spring 3 系列
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- 高性能mysql 之 选择存储引擎(一)
annan211
mysqlInnoDBMySQL引擎存储引擎
1 没有特殊情况,应尽可能使用InnoDB存储引擎。 原因:InnoDB 和 MYIsAM 是mysql 最常用、使用最普遍的存储引擎。其中InnoDB是最重要、最广泛的存储引擎。她 被设计用来处理大量的短期事务。短期事务大部分情况下是正常提交的,很少有回滚的情况。InnoDB的性能和自动崩溃 恢复特性使得她在非事务型存储的需求中也非常流行,除非有非常
- UDP网络编程
百合不是茶
UDP编程局域网组播
UDP是基于无连接的,不可靠的传输 与TCP/IP相反
UDP实现私聊,发送方式客户端,接受方式服务器
package netUDP_sc;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.Ine
- JQuery对象的val()方法执行结果分析
bijian1013
JavaScriptjsjquery
JavaScript中,如果id对应的标签不存在(同理JAVA中,如果对象不存在),则调用它的方法会报错或抛异常。在实际开发中,发现JQuery在id对应的标签不存在时,调其val()方法不会报错,结果是undefined。
- http请求测试实例(采用json-lib解析)
bijian1013
jsonhttp
由于fastjson只支持JDK1.5版本,因些对于JDK1.4的项目,可以采用json-lib来解析JSON数据。如下是http请求的另外一种写法,仅供参考。
package com;
import java.util.HashMap;
import java.util.Map;
import
- 【RPC框架Hessian四】Hessian与Spring集成
bit1129
hessian
在【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中介绍了基于Hessian的RPC服务的实现步骤,在那里使用Hessian提供的API完成基于Hessian的RPC服务开发和客户端调用,本文使用Spring对Hessian的集成来实现Hessian的RPC调用。
定义模型、接口和服务器端代码
|---Model
&nb
- 【Mahout三】基于Mahout CBayes算法的20newsgroup流程分析
bit1129
Mahout
1.Mahout环境搭建
1.下载Mahout
http://mirror.bit.edu.cn/apache/mahout/0.10.0/mahout-distribution-0.10.0.tar.gz
2.解压Mahout
3. 配置环境变量
vim /etc/profile
export HADOOP_HOME=/home
- nginx负载tomcat遇非80时的转发问题
ronin47
nginx负载后端容器是tomcat(其它容器如WAS,JBOSS暂没发现这个问题)非80端口,遇到跳转异常问题。解决的思路是:$host:port
详细如下:
该问题是最先发现的,由于之前对nginx不是特别的熟悉所以该问题是个入门级别的:
? 1 2 3 4 5
- java-17-在一个字符串中找到第一个只出现一次的字符
bylijinnan
java
public class FirstShowOnlyOnceElement {
/**Q17.在一个字符串中找到第一个只出现一次的字符。如输入abaccdeff,则输出b
* 1.int[] count:count[i]表示i对应字符出现的次数
* 2.将26个英文字母映射:a-z <--> 0-25
* 3.假设全部字母都是小写
*/
pu
- mongoDB 复制集
开窍的石头
mongodb
mongo的复制集就像mysql的主从数据库,当你往其中的主复制集(primary)写数据的时候,副复制集(secondary)会自动同步主复制集(Primary)的数据,当主复制集挂掉以后其中的一个副复制集会自动成为主复制集。提供服务器的可用性。和防止当机问题
mo
- [宇宙与天文]宇宙时代的经济学
comsci
经济
宇宙尺度的交通工具一般都体型巨大,造价高昂。。。。。
在宇宙中进行航行,近程采用反作用力类型的发动机,需要消耗少量矿石燃料,中远程航行要采用量子或者聚变反应堆发动机,进行超空间跳跃,要消耗大量高纯度水晶体能源
以目前地球上国家的经济发展水平来讲,
- Git忽略文件
Cwind
git
有很多文件不必使用git管理。例如Eclipse或其他IDE生成的项目文件,编译生成的各种目标或临时文件等。使用git status时,会在Untracked files里面看到这些文件列表,在一次需要添加的文件比较多时(使用git add . / git add -u),会把这些所有的未跟踪文件添加进索引。
==== ==== ==== 一些牢骚
- MySQL连接数据库的必须配置
dashuaifu
mysql连接数据库配置
MySQL连接数据库的必须配置
1.driverClass:com.mysql.jdbc.Driver
2.jdbcUrl:jdbc:mysql://localhost:3306/dbname
3.user:username
4.password:password
其中1是驱动名;2是url,这里的‘dbna
- 一生要养成的60个习惯
dcj3sjt126com
习惯
一生要养成的60个习惯
第1篇 让你更受大家欢迎的习惯
1 守时,不准时赴约,让别人等,会失去很多机会。
如何做到:
①该起床时就起床,
②养成任何事情都提前15分钟的习惯。
③带本可以随时阅读的书,如果早了就拿出来读读。
④有条理,生活没条理最容易耽误时间。
⑤提前计划:将重要和不重要的事情岔开。
⑥今天就准备好明天要穿的衣服。
⑦按时睡觉,这会让按时起床更容易。
2 注重
- [介绍]Yii 是什么
dcj3sjt126com
PHPyii2
Yii 是一个高性能,基于组件的 PHP 框架,用于快速开发现代 Web 应用程序。名字 Yii (读作 易)在中文里有“极致简单与不断演变”两重含义,也可看作 Yes It Is! 的缩写。
Yii 最适合做什么?
Yii 是一个通用的 Web 编程框架,即可以用于开发各种用 PHP 构建的 Web 应用。因为基于组件的框架结构和设计精巧的缓存支持,它特别适合开发大型应
- Linux SSH常用总结
eksliang
linux sshSSHD
转载请出自出处:http://eksliang.iteye.com/blog/2186931 一、连接到远程主机
格式:
ssh name@remoteserver
例如:
ssh
[email protected]
二、连接到远程主机指定的端口
格式:
ssh name@remoteserver -p 22
例如:
ssh i
- 快速上传头像到服务端工具类FaceUtil
gundumw100
android
快速迭代用
import java.io.DataOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOExceptio
- jQuery入门之怎么使用
ini
JavaScripthtmljqueryWebcss
jQuery的强大我何问起(个人主页:hovertree.com)就不用多说了,那么怎么使用jQuery呢?
首先,下载jquery。下载地址:http://hovertree.com/hvtart/bjae/b8627323101a4994.htm,一个是压缩版本,一个是未压缩版本,如果在开发测试阶段,可以使用未压缩版本,实际应用一般使用压缩版本(min)。然后就在页面上引用。
- 带filter的hbase查询优化
kane_xie
查询优化hbaseRandomRowFilter
问题描述
hbase scan数据缓慢,server端出现LeaseException。hbase写入缓慢。
问题原因
直接原因是: hbase client端每次和regionserver交互的时候,都会在服务器端生成一个Lease,Lease的有效期由参数hbase.regionserver.lease.period确定。如果hbase scan需
- java设计模式-单例模式
men4661273
java单例枚举反射IOC
单例模式1,饿汉模式
//饿汉式单例类.在类初始化时,已经自行实例化
public class Singleton1 {
//私有的默认构造函数
private Singleton1() {}
//已经自行实例化
private static final Singleton1 singl
- mongodb 查询某一天所有信息的3种方法,根据日期查询
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
// mongodb的查询真让人难以琢磨,就查询单天信息,都需要花费一番功夫才行。
// 第一种方式:
coll.aggregate([
{$project:{sendDate: {$substr: ['$sendTime', 0, 10]}, sendTime: 1, content:1}},
{$match:{sendDate: '2015-
- 二维数组转换成JSON
tangqi609567707
java二维数组json
原文出处:http://blog.csdn.net/springsen/article/details/7833596
public class Demo {
public static void main(String[] args) { String[][] blogL
- erlang supervisor
wudixiaotie
erlang
定义supervisor时,如果是监控celuesimple_one_for_one则删除children的时候就用supervisor:terminate_child (SupModuleName, ChildPid),如果shutdown策略选择的是brutal_kill,那么supervisor会调用exit(ChildPid, kill),这样的话如果Child的behavior是gen_