自相关函数与互相关函数

      最近做相关滤波追踪的时候,遇到了瓶颈,所以想从头到尾理一理基础知识。

1、概念

      相关函数是描述信号X(s),Y(t)(这两个信号可以是随机的,也可以是确定的)在任意两个不同时刻s、t的取值之间的相关程度。两个信号之间的相似性大小用相关系数来衡量。定义:

      

称为变量 X 和 Y 的相关系数。若相关系数 = 0,则称 X与Y 不相关。相关系数越大,相关性越大,但肯定小于或者等于1.。相关函数分为自相关和互相关。下面一一介绍

(1)、自相关函数

    自相关函数是描述随机信号 x(t) 在任意不同时刻 t1,t2的取值之间的相关程度。定义式:

      

主要性质如下:

(1)自相关函数为偶函数,其图形对称于纵轴。
(2)当s=t 时,自相关函数具有最大值,且等于信号的均方值,即
(3)周期信号的自相关函数仍为同频率的周期信号。

(2)、互相关函数

      自相关是互相关的一种特殊情况.。互相关函数是描述随机信号 x(t)、y(t) 在任意两个不同时刻s,t的取值之间的相关程度,其定义为:

      

对于连续函数,有定义:

      

对于离散的,有定义:

      

从定义式中可以看到,互相关函数和卷积运算类似,也是两个序列滑动相乘,但是区别在于:互相关的两个序列都不翻转,直接滑动相乘,求和;卷积的其中一个序列需要先翻转,然后滑动相乘,求和。所以,f(t)和g(t) 做相关等于 f*(-t) 与 g(t) 做卷积。


       在图象处理中,自相关和互相关函数的定义如下:设原函数是f(t),则自相关函数定义为 R(u)=f(t)*f(-t),其中*表示卷积;设两个函数分别是f(t)和g(t),则互相关函数定义为R(u)=f(t)*g(-t),它反映的是两个函数在不同的相对位置上互相匹配的程度


2、物理意义

      两个相关函数都是对相关性,即相似性的度量。如果进行归一化,会看的更清楚。
自相关就是函数和函数本身的相关性,当函数中有周期性分量的时候,自相关函数的极大值能够很好的体现这种周期性。互相关就是两个函数之间的相似性,当两个函数都具有相同周期分量的时候,它的极大值同样能体现这种周期性的分量。


      相关运算从线性空间的角度看其实是内积运算,而两个向量的内积在线性空间中表示一个向量向另一个向量的投影,表示两个向量的相似程度,所以相关运算就体现了这种相似程度。

你可能感兴趣的:(数字信号处理)