自然数k次幂的和 CF622 F .The Sum of the k-th Powers(拉格朗日插值)


算是一个模板题,好多拉格朗日插值的题,最后化简之后的式子都用到了这个模板

代码:

//i的k次幂之和

typedef long long ll;
using namespace std;
const int MAXN=1e6+500;
const int inf=0x3f3f3f3f;
const int mod=1e9+7;
//::iterator it;
inline int read(){
    int s=0,w=1;
    char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')w=-1;ch=getchar();}
    while(ch>='0'&&ch<='9') s=s*10+ch-'0',ch=getchar();
    return s*w;
}
ll n,k;
ll quick(ll a,ll b){
    ll ans=1;
    while(b){
        if(b&1)ans=(ans*a)%mod;
        a=(a*a)%mod;
        b/=2;
    }
    return ans;
}
ll inv(ll x){
    return quick(x,mod-2);
}
ll f[MAXN];
ll fac[MAXN];
ll iiik(ll n,ll k){
    for(ll i=1;i<=k+2;i++){
        f[i]=(f[i-1]+quick(i,k))%mod;
    }
    if(n<=k+2){
        return f[n];
        return 0;
    }
    ll p=1;
    for(ll i=1;i<=k+2;i++){
        p=(p*(n-i))%mod;
    }
    ll ans=0;
    for(ll i=1;i<=k+2;i++){
        ll m=1;
        // ll v1=inv(n-i)%mod;
        // ll v2=inv(fac[i-1]%mod*fac[k+2-i]%mod)%mod;
        if((k+2-i)%2==1)m=-1;
        m=((m*p%mod*f[i]%mod)*inv((n-i)*fac[i-1]%mod*fac[k+2-i]%mod))%mod;
        //ans=(ans+m*v1*v2%mod*f[i]%mod*p%mod)%mod;
        ans=(ans+m)%mod;
    }
    return (ans+mod)%mod;
}
ll ccc(ll n,ll m){
    if(n<m)return 0;
    return (fac[n] * quick(fac[m], mod - 2) % mod * quick(fac[n - m], mod - 2) % mod)%mod;
}
void init(){
    fac[0]=1;
    for(ll i=1;i<=1000050;i++)fac[i]=(fac[i-1]*i)%mod;
}
int main()
{
    std::ios::sync_with_stdio(false),cin.tie(0),cout.tie(0);
    init();
    cin>>n>>k;  
    cout<<iiik(n,k)<<endl;
    return 0;
}

/*
4 2

30
*/

拉格朗日介绍
自然数k次幂的和 CF622 F .The Sum of the k-th Powers(拉格朗日插值)_第1张图片
参考:大佬的讲解

你可能感兴趣的:(Codeforces,拉格朗日插值)