Link:http://poj.org/problem?id=2891
Strange Way to Express Integers
Description
Elina is reading a book written by Rujia Liu, which introduces a strange way to express non-negative integers. The way is described as following:
Choose k different positive integers a1, a2, …, ak. For some non-negative m, divide it by every ai (1 ≤ i ≤ k) to find the remainder ri. If a1, a2, …, ak are properly chosen, m can be determined, then the pairs (ai, ri) can be used to express m. “It is easy to calculate the pairs from m, ” said Elina. “But how can I find m from the pairs?” Since Elina is new to programming, this problem is too difficult for her. Can you help her? Input The input contains multiple test cases. Each test cases consists of some lines.
Output Output the non-negative integer m on a separate line for each test case. If there are multiple possible values, output the smallest one. If there are no possible values, output -1. Sample Input 2 8 7 11 9 Sample Output 31 Hint All integers in the input and the output are non-negative and can be represented by 64-bit integral types. Source
POJ Monthly--2006.07.30, Static
|
编程思想:扩展欧几里得+乘法逆元+中国剩余定理。
AC code1(递归版):
/**
中国剩余定理(不互质)
*/
#include
#include
#include
using namespace std;
typedef __int64 int64;
int64 Mod;
int64 gcd(int64 a, int64 b)
{
if(b==0)
return a;
return gcd(b,a%b);
}
int64 Extend_Euclid(int64 a, int64 b, int64&x, int64& y)//ax+by=gcd(a,b)
{
if(b==0)
{
x=1,y=0;
return a;
}
int64 d = Extend_Euclid(b,a%b,x,y);
int64 t = x;
x = y;
y = t - a/b*y;
return d;
}
//a在模n乘法下的逆元,没有则返回-1
int64 inv(int64 a, int64 n)
{
int64 x,y;
int64 t = Extend_Euclid(a,n,x,y);
if(t != 1)
return -1;
return (x%n+n)%n;
}
//将两个方程合并为一个
bool merge(int64 a1, int64 n1, int64 a2, int64 n2, int64& a3, int64& n3)
{
int64 d = gcd(n1,n2);
int64 c = a2-a1;
if(c%d)
return false;
c = (c%n2+n2)%n2;
c /= d;
n1 /= d;
n2 /= d;
c *= inv(n1,n2);
c %= n2;
c *= n1*d;
c += a1;
n3 = n1*n2*d;
a3 = (c%n3+n3)%n3;
return true;
}
//求模线性方程组x=ai(mod ni),ni可以不互质
int64 China_Reminder2(int len, int64* a, int64* n)//len为模方程的式子总数,a[i]、n[i]分别表示第i个式子的余数、除数
{
int64 a1=a[0],n1=n[0];
int64 a2,n2;
for(int i = 1; i < len; i++)
{
int64 aa,nn;
a2 = a[i],n2=n[i];
if(!merge(a1,n1,a2,n2,aa,nn))
return -1;//无解输出-1
a1 = aa;
n1 = nn;
}
Mod = n1;
return (a1%n1+n1)%n1;
}
int64 a[1000],b[1000];
int main()
{
int i;
int k;
while(scanf("%d",&k)!=EOF)
{
for(i = 0; i < k; i++)
scanf("%I64d %I64d",&a[i],&b[i]);
printf("%I64d\n",China_Reminder2(k,b,a));
}
return 0;
}
AC code2(非递归版):
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define PI acos(-1.0)
#define LINF 1000000000000000000LL
#define eps 1e-8
#define LL long long
#define MAXN 100010
#define MOD 1000000007
using namespace std;
const int INF=0x3f3f3f3f;
LL Mod;
LL gcd(LL a, LL b)
{
if(b==0)
return a;
return gcd(b,a%b);
}
LL exgcd(LL A,LL &x,LL B,LL &y)
{
LL x1,y1,x0,y0;
x0=1;y0=0;
x1=0;y1=1;
LL r=(A%B+B)%B;
LL q=(A-r)/B;
x=0;y=1;
while(r)
{
x=x0-q*x1;
y=y0-q*y1;
x0=x1;
y0=y1;
x1=x;y1=y;
A=B;B=r;r=A%B;
q=(A-r)/B;
}
return B;
}
LL ABS(LL x)
{
return x>=0?x:-x;
}
/*接下来介绍乘法逆元:
若m≥1,gcd(a,m)=1,则存在c使得 ca≡1(mod m) 我们把c称为是a对模m的逆,记为 a-1(mod m)或a-1 可以用扩展欧几里德算法求a-1
应用: 求(a/b)%c时,若a为大整数时可以写成 ((a%c)*((b-1)%c))%c,注意:这里(b-1)是b%c的乘法逆元,不是b减 1!!!
还可以使用扩展欧几里德算法求乘法逆元:*/
//a在模n乘法下的逆元,没有则返回-1(a * b % n == 1,已知a,n,求b就是求a模n的乘法逆元)
LL inv(LL a, LL n)
{
LL x,y;
//int64 t = Extend_Euclid(a,n,x,y);
/*******************************************
扩展欧几里得算法求乘法逆元
调用:exgcd(a,x,b,y);
则: x为a模b的乘法逆元,y为b模a的乘法逆元
********************************************/
LL t = exgcd(a,x,n,y);
if(t != 1)
return -1;
return (x%n+n)%n;
}
//将两个方程合并为一个
bool merge(LL a1, LL n1, LL a2, LL n2, LL& a3, LL& n3)
{
LL d = gcd(n1,n2);
LL c = a2-a1;
if(c%d)
return false;
c = (c%n2+n2)%n2;
c /= d;
n1 /= d;
n2 /= d;
c *= inv(n1,n2);
c %= n2;
c *= n1*d;
c += a1;
n3 = n1*n2*d;
a3 = (c%n3+n3)%n3;
return true;
}
//求模线性方程组x=ai(mod ni),ni可以不互质
LL China_Reminder2(LL len, LL* a, LL* n)//len为模方程的式子总数,a[i]、n[i]分别表示第i个式子的余数、除数
{
LL a1=a[0],n1=n[0];
LL a2,n2;
for(int i = 1; i < len; i++)
{
LL aa,nn;
a2 = a[i],n2=n[i];
if(!merge(a1,n1,a2,n2,aa,nn))
return -1;//无解输出-1
a1 = aa;
n1 = nn;
}
Mod = n1;
return (a1%n1+n1)%n1;
}
LL a[1000],b[1000];
int main()
{
int i;
int k;
while(scanf("%d",&k)!=EOF)
{
for(i = 0; i < k; i++)
scanf("%I64d %I64d",&a[i],&b[i]);
printf("%I64d\n",China_Reminder2(k,b,a));
}
return 0;
}