Tensorflow学习第1课——从本地加载MNIST以及FashionMNIST数据

很多Tensorflow第一课的教程都是使用MNIST或者FashionMNIST数据集作为示例数据集,但是其给的例程基本都是从网络上用load_data函数直接加载,该函数封装程度比较高,如果网络出现问题,数据集很难实时从网上下载(笔者就多次遇到这种问题,忍无可忍),而且数据是如何解码的也一无所知,不利于后续的学习和理解,因此本文主要介绍对下载到本地的MNIST或FashionMNIST数据集如何加载解析的问题。

下载到本地的数据集一般有两种格式:numpy的压缩格式.npz,以及gzip压缩格式.gz,下面我们分别介绍,在以下介绍中,均假设读者已经将数据集下载到本地了,如果不知道从哪里下载,请百度。

  1. npz格式数据集的加载代码非常简单,直接用numpy的load函数即可
import numpy as np

# 假设数据保存在'./datasets/'文件夹下
try:
    data = np.load('./datasets/mnist.npz')
    x_train, y_train, x_test, y_test = data['x_train'],data['y_train'],data['x_test'],data['y_test']
    
    # 可以将其中一条数据保存成txt文件,查看一下,会对这组数据有个直观的感受
    # np.savetxt('test.txt',x_train[0],fmt='%3d',newline='\n\n')
    
    # 将数据归一化
    x_train, x_test = x_train/255.0, x_test/255.0
except Exception as e:
    print('%s' %e)
  1. gz格式数据集的加载
import numpy as np
import os
import gzip

# 定义加载数据的函数,data_folder为保存gz数据的文件夹,该文件夹下有4个文件
# 'train-labels-idx1-ubyte.gz', 'train-images-idx3-ubyte.gz',
# 't10k-labels-idx1-ubyte.gz', 't10k-images-idx3-ubyte.gz'

def load_data(data_folder):

  files = [
      'train-labels-idx1-ubyte.gz', 'train-images-idx3-ubyte.gz',
      't10k-labels-idx1-ubyte.gz', 't10k-images-idx3-ubyte.gz'
  ]

  paths = []
  for fname in files:
    paths.append(os.path.join(data_folder,fname))

  with gzip.open(paths[0], 'rb') as lbpath:
    y_train = np.frombuffer(lbpath.read(), np.uint8, offset=8)

  with gzip.open(paths[1], 'rb') as imgpath:
    x_train = np.frombuffer(
        imgpath.read(), np.uint8, offset=16).reshape(len(y_train), 28, 28)

  with gzip.open(paths[2], 'rb') as lbpath:
    y_test = np.frombuffer(lbpath.read(), np.uint8, offset=8)

  with gzip.open(paths[3], 'rb') as imgpath:
    x_test = np.frombuffer(
        imgpath.read(), np.uint8, offset=16).reshape(len(y_test), 28, 28)

  return (x_train, y_train), (x_test, y_test)

(train_images, train_labels), (test_images, test_labels) = load_data('./datasets/fashion/')

这样,无论是npz格式还是gz格式,都可以轻松加载解码,每次启动测试都没必要从网上下载,增加不必要的麻烦。

你可能感兴趣的:(Tensorflow学习)