- 多元线性回归 python实现
雪可问春风
python机器学习numpy
importnumpyasnp#多元线性回归x=np.matrix([[2104,1416,1534,852,1],[5,3,3,2,1],[1,2,2,1,1],[45,40,30,36,1]])y=np.matrix([460,232,315,178])y1=np.matrix([460],[232].[315],[178])w=(x.T*x).I*x.T*yw1=(x.T*x).I*x.T*
- R实现线性回归逻辑回归
weixin_55475210
r语言线性回归逻辑回归
线性回归基本模型Y=β0+β1X1+β2X2+⋯+βmXm+ϵY=\beta_0+\beta_1X_1+\beta_2X_2+\cdots+\beta_mX_m+\epsilonY=β0+β1X1+β2X2+⋯+βmXm+ϵYYY为因变量X1,X2,…,XmX_1,X_2,\ldots,X_mX1,X2,…,Xm为m个自变量ϵ\epsilonϵ为残差lm()函数用于完成多元线性回归系数估计,回归系
- 2024国赛数学建模备战-数学建模思想方法大全及方法适用范围
V建模忠哥V
2024国赛数学建模
第一篇:方法适用范围一、统计学方法1.1多元回归1、方法概述:在研究变量之间的相互影响关系模型时候,用到这类方法,具体地说:其可以定量地描述某一现象和某些因素之间的函数关系,将各变量的已知值带入回归方程可以求出因变量的估计值,从而可以进行预测等相关研究。2、分类分为两类:多元线性回归和非线性线性回归;其中非线性回归可以通过一定的变化转化为线性回归,比如:y=lnx可以转化为y=uu=lnx来解决;
- Spark MLlib LinearRegression线性回归算法源码解析
SmileySure
Spark人工智能算法SparkMLlib
线性回归一元线性回归hθ(x)=θ0+θ1xhθ(x)=θ0+θ1x——————–1多元线性回归hθ(x)=∑mi=1θixi=θTXhθ(x)=∑i=1mθixi=θTX—————–2损失函数J(θ)=1/2∑mi=1(hθ(xi)−yi)2J(θ)=1/2∑i=1m(hθ(xi)−yi)2—————31/2是为了求导时系数为1,平方里是真实值减去估计值我们的目的就是求其最小值最小二乘法要求较为
- 每天一个数据分析题(二百零一)
紫色沙
数据分析题库数据分析数据挖掘
以下关于线性回归模型的经典假设,描述正确的是()。A.自变量与因变量必须有线性关系B.正交假定:扰动项与自变量不相关,期望值为0C.扰动项之间相互独立且服从方差相等的同一个正态分布D.多元线性回归中,自变量之间不能有强共线性题目来源于CDA模拟题库点击此处获取答案
- 水云模型去除植被覆盖影响反演土壤水
海绵波波107
遥感反演与解译技术笔记c#
目录水云模型简介使用方法环境配置输入文件源代码输出文件反演方法构造土壤水分与散射系数拟合方程一、Matlab拟合线性曲线二、python多元线性回归波段计算讨论本文是在哨兵1号后向散射系数土壤水分反演文章上的拓展,由于雷达后向散射系数还会受到植被覆盖、土壤粗糙度等的影响,所以雷达后向散射系数直接反演土壤水难以精确,本文使用水云模型去除植被散射影响,在此基础上更精确地反演土壤水。水云模型简介<
- 人工智能底层自行实现篇2——多元线性回归
ALGORITHM LOL
人工智能线性回归回归
2多元线性回归1.简介多元线性回归是一种统计建模方法,用于研究多个自变量与一个因变量之间的关系。它是简单线性回归的扩展,简单线性回归只涉及一个自变量和一个因变量。在多元线性回归中,我们可以使用多个自变量来预测一个因变量。多元线性回归的基本原理是通过拟合一个线性模型来描述自变量与因变量之间的关系。这个线性模型通常采用最小二乘法来估计参数,使得模型预测值与实际观测值之间的残差平方和最小化。多元线性回归
- 【机器学习】多元线性回归
Mount256
#机器学习机器学习线性回归人工智能
文章目录多元线性回归模型(multipleregressionmodel)损失/代价函数(costfunction)——均方误差(meansquarederror)批量梯度下降算法(batchgradientdescentalgorithm)特征工程(featureengineering)特征缩放(featurescaling)正则化线性回归(regularizationlinearregress
- 吴恩达机器学习全课程笔记第一篇
亿维数组
MachineLearning机器学习笔记人工智能
目录前言P1-P8监督学习无监督学习P9-P14线性回归模型成本(代价)函数P15-P20梯度下降P21-P24多类特征向量化多元线性回归的梯度下降P25-P30特征缩放检查梯度下降是否收敛学习率的选择特征工程多项式回归前言从今天开始,争取能够在开学之前(2.25)把b站上的【吴恩达机器学习】教程过一遍,并把笔记记录于此,本笔记将会把此课程每一p的重点内容及其截屏记录于此,以供大家参考和本人日后复
- 2019-12-01
xias147
利用python实现多元线性回归#-------机器学习--------1、简单一元线性回归importnumpyasnpimportmatplotlib.pyplotaspltx=np.array([1.,2.,3.,4.,5.])y=np.array([1.,3.,2.,3.,5,])plt.scatter(x,y)plt.axis([0,6,0,6])plt.show()x_mean=np.
- 线性回归算法原理及python实现
德乌大青蛙
机器学习算法python数据挖掘
文章目录引言回归与分类的区别线性回归简单线性回归原理及推导python实现算法多元线性回归原理及推导python实现算法手工实现多元线性回归算法sklearn实现多元线性回归算法引言回归与分类的区别区分回归与分类其实很简单,举个例子,预测病人患病概率,结果只有患病和不患病2种,这就是分类;预测房价,结果可能是在一段区间内,这个就是回归。线性回归线性回归是利用数理统计中回归分析方法,其本质是寻找出一
- (Ridge, Lasso) Regression
王金松
岭回归岭回归的损失函数MSE+L2岭回归还是多元线性回归y=wTx只不过损失函数MSE添加了损失项w越小越好?因为为了提高模型的泛化能力(容错能力),w越小越好因为如果x1有错,w越小,对y的影响越小但是w为0没意义,所以w要适当保证准确率的情况下提高泛化能力和容错能力多元线性回归通过MSE(最小二乘leastsquares)保证正确率但是我们还需要模型提高泛化能力提高泛化能力min((y-y_h
- 2019-10-04 学习极大似然估计与优化理论
小郑的学习笔记
主要推导了一个公式推导MLE与LSE.jpeg即用极大似然估计(MLE)的角度去解多元线性回归其结果与最小二乘(LSE)解的结果是一样的,这一点我觉得很神奇。可以看这个解释例子https://www.cnblogs.com/little-YTMM/p/5700226.html2。学习数值分析,学习了两种优化,无约束最优化和有约束最优化。无约束最优化主要有梯度下降法牛顿法梯度下降法在接近极值的时候会
- 04 多元线性回归
凡有言说
1.多元线性回归模型一般的多元线性回归模型可以写为:多元线性回归模型因为在绝大数情况下,回归方程都是有常数,我们可以令xi1=1,则上式可以简化为:多元线性回归模型上式又可以用向量来表示:多元线性回归模型全部写出来有如下:多元线性回归模型其中矩阵X为:X矩阵如此便得到了一般多元线性回归模型的向量形式2.OLS估计量的推导我们的目标函数依旧是最小化残差平方和,寻找最佳拟合的回归超平面。目标函数为:目
- 正态性检验,多元线性和多项式回归,输出具体的回归函数
huxuanlai
数据挖掘和统计建模
一、业务场景:1.一个汽车销售公司,其客户来店消费金额是否符合正态分布?答:这个问题可以抽象为统计学的统计推断中的假设检验部分的正态性检验。2.如何模拟这些数据的函数特征,怎么看拟合的好不好?答:这是个拟合问题,视情况用线性拟合和多项式拟合来拟合。通过拟合打分看拟合效果。3.这个具体函数能否给出来?答:可以。二、下面分四部分来用代码解决上述问题1.对数据做正态性判断2.对数据做多元线性回归3.对数
- 【机器学习笔记】回归算法
住在天上的云
机器学习笔记回归线性回归人工智能
回归算法文章目录回归算法1线性回归2损失函数3多元线性回归4线性回归的相关系数1线性回归回归分析(Regression)回归分析是描述变量间关系的一种统计分析方法例:在线教育场景因变量Y:在线学习课程满意度自变量X:平台交互性、教学资源、课程设计预测性的建模技术,通常用于预测分析,预测的结果多为连续值(也可为离散值,二值)线性回归(Linearregression)因变量和自变量之间是线性关系,就
- MATLAB实现多元线性回归数学建模算法
AI Dog
数学建模\MATLAB数学建模算法matlab线性回归数据挖掘
多元线性回归是指在一个多维特征空间中,通过线性模型来拟合输入特征与输出之间的关系。多元线性回归的数学表达式为:y=β0+β1x1+β2x2+…+βnxn+ε其中,y为输出变量,x1,x2,…,xn为输入变量,β0,β1,β2,…,βn为回归系数,ε为误差项。通过最小化误差项的平方和来确定回归系数的值,通常使用最小二乘法来求解。多元线性回归可以用于解决多个自变量对因变量的影响问题,它可以用于预测和建
- MATLAB实现偏最小二乘回归(PLSR)数学建模算法
AI Dog
数学建模\MATLAB算法matlab回归数学建模数据挖掘
偏最小二乘回归(PartialLeastSquaresRegression,简称PLS回归)是一种多元回归分析方法,用于处理具有多重共线性和高维数据的情况。它结合了主成分分析和多元线性回归的特点,旨在降低预测模型中的自变量之间的共线性,并通过捕捉自变量和因变量之间的主要关系来建立模型。PLS回归的核心思想是通过找到一组新的变量(称为部分最小二乘变量或PLS成分),这些新变量是原始自变量的线性组合,
- Python 散点图线性拟合_线性回归(实战)
weixin_39929595
Python散点图线性拟合python线性回归统计检验p值线性回归系数的标准误
前面介绍了线性回归的理论知识后,有些朋友建议我写一篇实战篇,这样可以方便理解。今天我们就来使用Python实现多元线性回归模型的落地。本次数据集如下链接:https://pan.baidu.com/s/16w8-snxnTKtU3boAJGN1Cgpan.baidu.com提取码:3udf各个变量解释为AT:温度V:压力AP:相对湿度RH:排气量PE:发电量(因变量)下面正式开始吧!1,导入包#导
- 彻底学会系列:一、机器学习之线性回归(二)
挑大梁
#机器学习机器学习线性回归人工智能
0.概念和公式请参考:一、机器学习之线性回归(一)1.涉及公式1.1简单线性回归y=wx+by=wx+by=wx+b1.2多元线性回归y^=w1X1+w2X2...wnXn+w0\haty=w_1X_1+w_2X_2...w_nX_n+w_0y^=w1X1+w2X2...wnXn+w0向量表示:y^=WTX\haty=W^TXy^=WTX1.3高斯密度函数f(x;μ,σ2)=12πσexp(−(
- OpenCV与机器学习:使用opencv和sklearn实现线性回归
艾醒(AiXing-w)
OpenCV机器学习机器学习opencvsklearn
前言线性回归是一种统计分析方法,用于确定两种或两种以上变量之间相互依赖的定量关系。在统计学中,线性回归利用线性回归方程(最小二乘函数)对一个或多个自变量(特征值)和因变量(目标值)之间的关系进行建模。线性回归主要分为一元线性回归和多元线性回归。一元线性回归涉及两个变量,其关系可以用一条直线近似表示。而多元线性回归则涉及两个或两个以上的自变量,因变量和自变量之间是线性关系。线性回归的目标是找到一个数
- 每天一个数据分析题(一百五十一)
紫色沙
数据分析题库数据分析数据挖掘
在多元线性回归模型中,自变量的选取方法中向前回归法的特点是什么?A.它从完整模型开始,逐步剔除对模型贡献不显著的变量。B.它首先将所有变量包含在模型中,然后逐个检验每个变量的显著性。C.它从没有任何自变量的模型开始,逐步添加每次增加最多解释力度的变量。D.它通过逐步地添加和删除变量来决定哪些变量应该包含在模型中。题目来源于CDA模拟题库点击此处获取答案
- 机器学习本科课程 实验1 线性模型
11egativ1ty
机器学习本科课程机器学习人工智能
第三章线性模型3.1一元线性回归3.2多元线性回归3.3对数几率回归,线性判别分析(二选一)3.4类别不均衡3.1一元线性回归——Kaggle房价预测使用Kaggle房价预测数据集:打乱数据顺序,取前70%的数据作为训练集,后30%的数据作为测试集分别以LotArea,BsmtUnfSF,GarageArea三种特征作为模型的输入,SalePrice作为模型的输出在训练集上,使用最小二乘法求解模型
- 第6章 多元线性回归
流焱之舞
一、遗漏变量偏差遗漏变量偏差是指OLS估计量中存在的偏差,它是在回归变量与遗漏变量相关时产生的。遗漏变量偏差意味着第一个最小二乘假设不成立。其理由如下:由前知一元线性回归模型中的误差项表示除了之外所有决定的因素。若其中某个因素与相关,则意味着误差项与相关。令和的相关系数为,第一个假设不成立而第二个和第三个假设成立,则OLS估计量具有如下极限:(1)无论样本容量是大还是小,遗漏变量偏差问题都存在。(
- java移位运算 cpu gpu_ND4J求多元线性回归以及GPU和CPU计算性能对比
zhuyuejituan
java移位运算cpugpu
上一篇博客《梯度下降法求多元线性回归及Java实现》简单了介绍了梯度下降法,并用Java实现了一个梯度下降法求回归的例子。本篇博客,尝试用dl4j的张量运算库nd4j来实现梯度下降法求多元线性回归,并比较GPU和CPU计算的性能差异。一、ND4J简介ND4J是DL4J提供的张量运算库,提供了多种张量运算的封装,以下内容复杂于ND4J官网:ND4J和ND4S是JVM的科学计算库,并为生产环境设计,亦
- 2018-12-06多元线性回归
奈何qiao
具有多个变量的线性回归也称为“多元线性回归”。多变量示例多个特征的假设函数的多变量形式如下:多变量的假设函数上述的式子如果以房价为例,可以看成房子的基本价格;是每平方米的价格;为每层楼的价格...;是房屋内的平方米数;是楼层数目...使用矩阵乘法的定义,我们的多变量假设函数可以简洁地表示为(我们额外将设为1):如此的设置可以让和进行矩阵运算。多特征假设函数的矢量化(多元线性回归)
- 【机器学习 & 深度学习】卷积神经网络简述
为梦而生~
机器学习深度学习机器学习人工智能深度学习神经网络cnn计算机视觉自然语言处理
个人主页:为梦而生~关注我一起学习吧!专栏:机器学习欢迎订阅!相对完整的机器学习基础教学!⭐特别提醒:针对机器学习,特别开始专栏:机器学习python实战欢迎订阅!本专栏针对机器学习基础专栏的理论知识,利用python代码进行实际展示,真正做到从基础到实战!往期推荐:【机器学习基础】一元线性回归(适合初学者的保姆级文章)【机器学习基础】多元线性回归(适合初学者的保姆级文章)【机器学习基础】决策树(
- 机器学习4-多元线性回归
dracularking
机器学习机器学习线性回归人工智能
多元线性回归(MultipleLinearRegression)是线性回归的一种扩展形式,用于建立因变量与多个自变量之间的关系。在简单线性回归中,我们考虑一个因变量和一个自变量之间的线性关系,而多元线性回归允许我们考虑多个自变量对因变量的影响。一般的多元线性回归模型的数学表达式如下:其中:Y是因变量(要预测的目标)。X1,X2,…,Xn是自变量(特征)。β0是截距(模型在X1,X2,…,Xn都为0
- 机器学习:多项式回归(Python)
捕捉一只Diu
机器学习回归python笔记
多元线性回归闭式解:closed_form_sol.pyimportnumpyasnpimportmatplotlib.pyplotaspltclassLRClosedFormSol:def__init__(self,fit_intercept=True,normalize=True):""":paramfit_intercept:是否训练bias:paramnormalize:是否标准化数据""
- 【机器学习 & 深度学习】神经网络简述
为梦而生~
机器学习深度学习机器学习深度学习神经网络人工智能
个人主页:为梦而生~关注我一起学习吧!专栏:机器学习欢迎订阅!相对完整的机器学习基础教学!⭐特别提醒:针对机器学习,特别开始专栏:机器学习python实战欢迎订阅!本专栏针对机器学习基础专栏的理论知识,利用python代码进行实际展示,真正做到从基础到实战!往期推荐:【机器学习基础】一元线性回归(适合初学者的保姆级文章)【机器学习基础】多元线性回归(适合初学者的保姆级文章)【机器学习基础】决策树(
- 安装数据库首次应用
Array_06
javaoraclesql
可是为什么再一次失败之后就变成直接跳过那个要求
enter full pathname of java.exe的界面
这个java.exe是你的Oracle 11g安装目录中例如:【F:\app\chen\product\11.2.0\dbhome_1\jdk\jre\bin】下的java.exe 。不是你的电脑安装的java jdk下的java.exe!
注意第一次,使用SQL D
- Weblogic Server Console密码修改和遗忘解决方法
bijian1013
Welogic
在工作中一同事将Weblogic的console的密码忘记了,通过网上查询资料解决,实践整理了一下。
一.修改Console密码
打开weblogic控制台,安全领域 --> myrealm -->&n
- IllegalStateException: Cannot forward a response that is already committed
Cwind
javaServlets
对于初学者来说,一个常见的误解是:当调用 forward() 或者 sendRedirect() 时控制流将会自动跳出原函数。标题所示错误通常是基于此误解而引起的。 示例代码:
protected void doPost() {
if (someCondition) {
sendRedirect();
}
forward(); // Thi
- 基于流的装饰设计模式
木zi_鸣
设计模式
当想要对已有类的对象进行功能增强时,可以定义一个类,将已有对象传入,基于已有的功能,并提供加强功能。
自定义的类成为装饰类
模仿BufferedReader,对Reader进行包装,体现装饰设计模式
装饰类通常会通过构造方法接受被装饰的对象,并基于被装饰的对象功能,提供更强的功能。
装饰模式比继承灵活,避免继承臃肿,降低了类与类之间的关系
装饰类因为增强已有对象,具备的功能该
- Linux中的uniq命令
被触发
linux
Linux命令uniq的作用是过滤重复部分显示文件内容,这个命令读取输入文件,并比较相邻的行。在正常情 况下,第二个及以后更多个重复行将被删去,行比较是根据所用字符集的排序序列进行的。该命令加工后的结果写到输出文件中。输入文件和输出文件必须不同。如 果输入文件用“- ”表示,则从标准输入读取。
AD:
uniq [选项] 文件
说明:这个命令读取输入文件,并比较相邻的行。在正常情况下,第二个
- 正则表达式Pattern
肆无忌惮_
Pattern
正则表达式是符合一定规则的表达式,用来专门操作字符串,对字符创进行匹配,切割,替换,获取。
例如,我们需要对QQ号码格式进行检验
规则是长度6~12位 不能0开头 只能是数字,我们可以一位一位进行比较,利用parseLong进行判断,或者是用正则表达式来匹配[1-9][0-9]{4,14} 或者 [1-9]\d{4,14}
&nbs
- Oracle高级查询之OVER (PARTITION BY ..)
知了ing
oraclesql
一、rank()/dense_rank() over(partition by ...order by ...)
现在客户有这样一个需求,查询每个部门工资最高的雇员的信息,相信有一定oracle应用知识的同学都能写出下面的SQL语句:
select e.ename, e.job, e.sal, e.deptno
from scott.emp e,
(se
- Python调试
矮蛋蛋
pythonpdb
原文地址:
http://blog.csdn.net/xuyuefei1988/article/details/19399137
1、下面网上收罗的资料初学者应该够用了,但对比IBM的Python 代码调试技巧:
IBM:包括 pdb 模块、利用 PyDev 和 Eclipse 集成进行调试、PyCharm 以及 Debug 日志进行调试:
http://www.ibm.com/d
- webservice传递自定义对象时函数为空,以及boolean不对应的问题
alleni123
webservice
今天在客户端调用方法
NodeStatus status=iservice.getNodeStatus().
结果NodeStatus的属性都是null。
进行debug之后,发现服务器端返回的确实是有值的对象。
后来发现原来是因为在客户端,NodeStatus的setter全部被我删除了。
本来是因为逻辑上不需要在客户端使用setter, 结果改了之后竟然不能获取带属性值的
- java如何干掉指针,又如何巧妙的通过引用来操作指针————>说的就是java指针
百合不是茶
C语言的强大在于可以直接操作指针的地址,通过改变指针的地址指向来达到更改地址的目的,又是由于c语言的指针过于强大,初学者很难掌握, java的出现解决了c,c++中指针的问题 java将指针封装在底层,开发人员是不能够去操作指针的地址,但是可以通过引用来间接的操作:
定义一个指针p来指向a的地址(&是地址符号):
- Eclipse打不开,提示“An error has occurred.See the log file ***/.log”
bijian1013
eclipse
打开eclipse工作目录的\.metadata\.log文件,发现如下错误:
!ENTRY org.eclipse.osgi 4 0 2012-09-10 09:28:57.139
!MESSAGE Application error
!STACK 1
java.lang.NoClassDefFoundError: org/eclipse/core/resources/IContai
- spring aop实例annotation方法实现
bijian1013
javaspringAOPannotation
在spring aop实例中我们通过配置xml文件来实现AOP,这里学习使用annotation来实现,使用annotation其实就是指明具体的aspect,pointcut和advice。1.申明一个切面(用一个类来实现)在这个切面里,包括了advice和pointcut
AdviceMethods.jav
- [Velocity一]Velocity语法基础入门
bit1129
velocity
用户和开发人员参考文档
http://velocity.apache.org/engine/releases/velocity-1.7/developer-guide.html
注释
1.行级注释##
2.多行注释#* *#
变量定义
使用$开头的字符串是变量定义,例如$var1, $var2,
赋值
使用#set为变量赋值,例
- 【Kafka十一】关于Kafka的副本管理
bit1129
kafka
1. 关于request.required.acks
request.required.acks控制者Producer写请求的什么时候可以确认写成功,默认是0,
0表示即不进行确认即返回。
1表示Leader写成功即返回,此时还没有进行写数据同步到其它Follower Partition中
-1表示根据指定的最少Partition确认后才返回,这个在
Th
- lua统计nginx内部变量数据
ronin47
lua nginx 统计
server {
listen 80;
server_name photo.domain.com;
location /{set $str $uri;
content_by_lua '
local url = ngx.var.uri
local res = ngx.location.capture(
- java-11.二叉树中节点的最大距离
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
public class MaxLenInBinTree {
/*
a. 1
/ \
2 3
/ \ / \
4 5 6 7
max=4 pass "root"
- Netty源码学习-ReadTimeoutHandler
bylijinnan
javanetty
ReadTimeoutHandler的实现思路:
开启一个定时任务,如果在指定时间内没有接收到消息,则抛出ReadTimeoutException
这个异常的捕获,在开发中,交给跟在ReadTimeoutHandler后面的ChannelHandler,例如
private final ChannelHandler timeoutHandler =
new ReadTim
- jquery验证上传文件样式及大小(好用)
cngolon
文件上传jquery验证
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<script src="jquery1.8/jquery-1.8.0.
- 浏览器兼容【转】
cuishikuan
css浏览器IE
浏览器兼容问题一:不同浏览器的标签默认的外补丁和内补丁不同
问题症状:随便写几个标签,不加样式控制的情况下,各自的margin 和padding差异较大。
碰到频率:100%
解决方案:CSS里 *{margin:0;padding:0;}
备注:这个是最常见的也是最易解决的一个浏览器兼容性问题,几乎所有的CSS文件开头都会用通配符*来设
- Shell特殊变量:Shell $0, $#, $*, $@, $?, $$和命令行参数
daizj
shell$#$?特殊变量
前面已经讲到,变量名只能包含数字、字母和下划线,因为某些包含其他字符的变量有特殊含义,这样的变量被称为特殊变量。例如,$ 表示当前Shell进程的ID,即pid,看下面的代码:
$echo $$
运行结果
29949
特殊变量列表 变量 含义 $0 当前脚本的文件名 $n 传递给脚本或函数的参数。n 是一个数字,表示第几个参数。例如,第一个
- 程序设计KISS 原则-------KEEP IT SIMPLE, STUPID!
dcj3sjt126com
unix
翻到一本书,讲到编程一般原则是kiss:Keep It Simple, Stupid.对这个原则深有体会,其实不仅编程如此,而且系统架构也是如此。
KEEP IT SIMPLE, STUPID! 编写只做一件事情,并且要做好的程序;编写可以在一起工作的程序,编写处理文本流的程序,因为这是通用的接口。这就是UNIX哲学.所有的哲学真 正的浓缩为一个铁一样的定律,高明的工程师的神圣的“KISS 原
- android Activity间List传值
dcj3sjt126com
Activity
第一个Activity:
import java.util.ArrayList;import java.util.HashMap;import java.util.List;import java.util.Map;import android.app.Activity;import android.content.Intent;import android.os.Bundle;import a
- tomcat 设置java虚拟机内存
eksliang
tomcat 内存设置
转载请出自出处:http://eksliang.iteye.com/blog/2117772
http://eksliang.iteye.com/
常见的内存溢出有以下两种:
java.lang.OutOfMemoryError: PermGen space
java.lang.OutOfMemoryError: Java heap space
------------
- Android 数据库事务处理
gqdy365
android
使用SQLiteDatabase的beginTransaction()方法可以开启一个事务,程序执行到endTransaction() 方法时会检查事务的标志是否为成功,如果程序执行到endTransaction()之前调用了setTransactionSuccessful() 方法设置事务的标志为成功则提交事务,如果没有调用setTransactionSuccessful() 方法则回滚事务。事
- Java 打开浏览器
hw1287789687
打开网址open浏览器open browser打开url打开浏览器
使用java 语言如何打开浏览器呢?
我们先研究下在cmd窗口中,如何打开网址
使用IE 打开
D:\software\bin>cmd /c start iexplore http://hw1287789687.iteye.com/blog/2153709
使用火狐打开
D:\software\bin>cmd /c start firefox http://hw1287789
- ReplaceGoogleCDN:将 Google CDN 替换为国内的 Chrome 插件
justjavac
chromeGooglegoogle apichrome插件
Chrome Web Store 安装地址: https://chrome.google.com/webstore/detail/replace-google-cdn/kpampjmfiopfpkkepbllemkibefkiice
由于众所周知的原因,只需替换一个域名就可以继续使用Google提供的前端公共库了。 同样,通过script标记引用这些资源,让网站访问速度瞬间提速吧
- 进程VS.线程
m635674608
线程
资料来源:
http://www.liaoxuefeng.com/wiki/001374738125095c955c1e6d8bb493182103fac9270762a000/001397567993007df355a3394da48f0bf14960f0c78753f000 1、Apache最早就是采用多进程模式 2、IIS服务器默认采用多线程模式 3、多进程优缺点 优点:
多进程模式最大
- Linux下安装MemCached
字符串
memcached
前提准备:1. MemCached目前最新版本为:1.4.22,可以从官网下载到。2. MemCached依赖libevent,因此在安装MemCached之前需要先安装libevent。2.1 运行下面命令,查看系统是否已安装libevent。[root@SecurityCheck ~]# rpm -qa|grep libevent libevent-headers-1.4.13-4.el6.n
- java设计模式之--jdk动态代理(实现aop编程)
Supanccy2013
javaDAO设计模式AOP
与静态代理类对照的是动态代理类,动态代理类的字节码在程序运行时由Java反射机制动态生成,无需程序员手工编写它的源代码。动态代理类不仅简化了编程工作,而且提高了软件系统的可扩展性,因为Java 反射机制可以生成任意类型的动态代理类。java.lang.reflect 包中的Proxy类和InvocationHandler 接口提供了生成动态代理类的能力。
&
- Spring 4.2新特性-对java8默认方法(default method)定义Bean的支持
wiselyman
spring 4
2.1 默认方法(default method)
java8引入了一个default medthod;
用来扩展已有的接口,在对已有接口的使用不产生任何影响的情况下,添加扩展
使用default关键字
Spring 4.2支持加载在默认方法里声明的bean
2.2
将要被声明成bean的类
public class DemoService {