假设从一个矩阵的左上角的(1,1)位置走到右下角(n,m)的位置 只能往右走或是往下走;
方法1 : 暴力dp[i][j]=dp[i-1][j]+dp[i][j-1]; dp[n][m];
方法2: 总的来看的话从左上角走到右下角必须要走n+m-2步,其中n-1步必须要是往下走,m-1步必须是往右面走,这个问题就像是
从n+m个物品中选出n个物品来,剩下的物品就随便了C(n+m-2,n-1),这样的话就一定要用到Lucas定理了;
CodeForces - 559C
Giant chess is quite common in Geraldion. We will not delve into the rules of the game, we'll just say that the game takes place on an h × w field, and it is painted in two colors, but not like in chess. Almost all cells of the field are white and only some of them are black. Currently Gerald is finishing a game of giant chess against his friend Pollard. Gerald has almost won, and the only thing he needs to win is to bring the pawn from the upper left corner of the board, where it is now standing, to the lower right corner. Gerald is so confident of victory that he became interested, in how many ways can he win?
The pawn, which Gerald has got left can go in two ways: one cell down or one cell to the right. In addition, it can not go to the black cells, otherwise the Gerald still loses. There are no other pawns or pieces left on the field, so that, according to the rules of giant chess Gerald moves his pawn until the game is over, and Pollard is just watching this process.
Input
The first line of the input contains three integers: h, w, n — the sides of the board and the number of black cells (1 ≤ h, w ≤ 105, 1 ≤ n ≤ 2000).
Next n lines contain the description of black cells. The i-th of these lines contains numbers ri, ci (1 ≤ ri ≤ h, 1 ≤ ci ≤ w) — the number of the row and column of the i-th cell.
It is guaranteed that the upper left and lower right cell are white and all cells in the description are distinct.
Output
Print a single line — the remainder of the number of ways to move Gerald's pawn from the upper left to the lower right corner modulo 109 + 7.
Examples
Input
3 4 2
2 2
2 3
Output
2
Input
100 100 3
15 16
16 15
99 88
Output
545732279
对于这道题目,我们可以先看第i个坏点的情况,ff[i]表示的是到第i个点的时候合法路径,那么这个地方的合法的条数
就是 从起点到这个点的所有路径条数减掉前面每一个坏点的的合法条数乘上到这个点到点的所有可能路径条数
坏点 1 2 3 4
2 2 2 3
-以坏1开头 -以坏2开头 类似
的排列 的排列
#include
using namespace std;
typedef long long ll;
#define rep(i,s,n) for(ll i=s;i<=n;i++)
#define per(i,n,s) for(ll i=n;i>=s;i--)
const int Max = 2e5+10;
const int maxn = 2e5+10;
const ll mod = 1e9+7;
struct node
{
ll x,y;
}p[Max];
//ll dp[60][60];
//void Init(){
// rep(i,1,50){
// dp[i][1]=1;
// dp[1][i]=1;
// }
// rep(i,2,50){
// rep(j,2,50){
// dp[i][j]=dp[i-1][j]+dp[i][j-1];
// dp[i][j]=(dp[i][j]%mod+mod)%mod;
// }
// }
//}//暴力验证情况
bool cmp(node a, node b){
if(a.x!=b.x){
return a.x
return a.y
ll c[maxn];
ll f[maxn];
ll qmod(long long a, long long b)
{
ll res = 1ll;
while(b)
{
if(b&1)
{
res=res*a%mod;
}
b>>=1;
a=a*a%mod;
}
return res;
}
ll inv[maxn];
void init()
{
f[0]=1;
for(ll i=1;i
f[i]=(f[i-1]*i)%mod;
}
inv[maxn-1]=qmod(f[maxn-1],mod-2);
for(ll i=maxn-2;i>=0;i--)
{
inv[i]=(inv[i+1]*(i+1))%mod;
}
}
ll Lucas(long long n, long long m)
{
return f[n]*inv[m]%mod*inv[n-m]%mod;
}
ll ff[Max];
int main(){
ll h,w,n;
init();
// Init();
// while(1){
// scanf("%lld %lld",&h,&w);
// printf("%lld\n",Lucas(h+w-2,h-1));
// printf("%lld\n",dp[h][w]);
// }//暴力验证的情况
scanf("%lld %lld %lld",&h,&w,&n);
rep(i,1,n){
scanf("%lld %lld",&p[i].x,&p[i].y);
}
sort(p+1,p+1+n,cmp);
ll sum=Lucas(h+w-2,h-1);
printf("%lld\n",sum);
rep(i,1,n){
ff[i]=Lucas(p[i].x+p[i].y-2,p[i].x-1);
ff[i]=(ff[i]%mod+mod)%mod;
rep(j,1,i-1){
ff[i]=(ff[i]-ff[j]*Lucas((p[i].x-p[j].x+p[i].y-p[j].y),(p[i].x-p[j].x)));
ff[i]=(ff[i]%mod+mod)%mod;
}
sum=(sum-ff[i]*Lucas((h-p[i].x+w-p[i].y),(h-p[i].x)));
sum=(sum%mod+mod)%mod;
}
printf("%lld\n",sum);
return 0;
}