代码:
https://github.com/fuyou123/Segmentation_Unet
U-Net网络训练
1. args = args_parse()
def args_parse():
# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-d", "--data", default="./unet_train/road/",
help="training data's path")
ap.add_argument("-m", "--model", default="Trained_Unet_Model.h5",
help="path to output model")
ap.add_argument("-p", "--plot", type=str, default="plot.png",
help="path to output accuracy/loss plot")
args = vars(ap.parse_args())
return args
注意:对于命令行参数的设定,参考Argparse的使用。由于我的调试过程是在windows环境下,所以路径设为了默认值,便于操作。
2. model = unet() #模型初始化
调试可能出现的问题:ValueError: Negative dimension size caused by subtracting 2 from 1 for 'max_pooling2d_2/Max...
解决:https://blog.csdn.net/weixin_43723625/article/details/104918997
def unet():
inputs = Input((3, img_w, img_h))
conv1 = Conv2D(32, (3, 3), activation="relu", padding="same")(inputs)
conv1 = Conv2D(32, (3, 3), activation="relu", padding="same")(conv1)
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
conv2 = Conv2D(64, (3, 3), activation="relu", padding="same")(pool1)
conv2 = Conv2D(64, (3, 3), activation="relu", padding="same")(conv2)
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
conv3 = Conv2D(128, (3, 3), activation="relu", padding="same")(pool2)
conv3 = Conv2D(128, (3, 3), activation="relu", padding="same")(conv3)
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
conv4 = Conv2D(256, (3, 3), activation="relu", padding="same")(pool3)
conv4 = Conv2D(256, (3, 3), activation="relu", padding="same")(conv4)
pool4 = MaxPooling2D(pool_size=(2, 2))(conv4)
conv5 = Conv2D(512, (3, 3), activation="relu", padding="same")(pool4)
conv5 = Conv2D(512, (3, 3), activation="relu", padding="same")(conv5)
up6 = concatenate([UpSampling2D(size=(2, 2))(conv5), conv4], axis=1)
conv6 = Conv2D(256, (3, 3), activation="relu", padding="same")(up6)
conv6 = Conv2D(256, (3, 3), activation="relu", padding="same")(conv6)
up7 = concatenate([UpSampling2D(size=(2, 2))(conv6), conv3], axis=1)
conv7 = Conv2D(128, (3, 3), activation="relu", padding="same")(up7)
conv7 = Conv2D(128, (3, 3), activation="relu", padding="same")(conv7)
up8 = concatenate([UpSampling2D(size=(2, 2))(conv7), conv2], axis=1)
conv8 = Conv2D(64, (3, 3), activation="relu", padding="same")(up8)
conv8 = Conv2D(64, (3, 3), activation="relu", padding="same")(conv8)
up9 = concatenate([UpSampling2D(size=(2, 2))(conv8), conv1], axis=1)
conv9 = Conv2D(32, (3, 3), activation="relu", padding="same")(up9)
conv9 = Conv2D(32, (3, 3), activation="relu", padding="same")(conv9)
conv10 = Conv2D(n_label, (1, 1), activation="sigmoid")(conv9)
#conv10 = Conv2D(n_label, (1, 1), activation="softmax")(conv9)
model = Model(inputs=inputs, outputs=conv10)
model.compile(optimizer='Adam', loss='binary_crossentropy', metrics=['accuracy'])
return model
3. get_train_val()
def get_train_val(val_rate = 0.25):
train_url = []
train_set = [] # 训练数据集
val_set = [] # 测试训练集
# 将待训练的图片路径存入列表
for pic in os.listdir(filepath + 'src'):
train_url.append(pic)
random.shuffle(train_url) # 将序列的所有元素随机排序
total_num = len(train_url)
# 将数据集分为2部分,3/4用于训练,1/4用于检验
val_num = int(val_rate * total_num)
for i in range(len(train_url)):
if i < val_num:
val_set.append(train_url[i])
else:
train_set.append(train_url[i])
return train_set,val_set
由于在训练过程中,为了检验训练中的效果,一般是从原数据集中取出一小部分数据用于检验训练的效果。而不是等全部训练结束后,再检验训练模型。
4. model.fit_generator()
# 使用 Python 生成器逐批生成的数据,按批次训练模型
H = model.fit_generator(generator=generateData(BS,train_set),steps_per_epoch=train_numb//BS,epochs=EPOCHS,verbose=1,
validation_data=generateValidData(BS,val_set),validation_steps=valid_numb//BS,callbacks=callable,max_q_size=1)
参数:
(1) generator=generateData(BS,train_set) # BS=16
定义训练时,选取数据的方式是,将数据集中每16个为一组进行训练
(2) steps_per_epoch=train_numb//BS # 整数,表示一次epoch需要训练的组数
(3) epochs=EPOCHS # 迭代次数
(4) validation_data=generateValidData(BS,val_set) # BS=16 , 定义验证集的生成器
(5) validation_steps=valid_numb//BS # 整数,表示一次epoch需要训练的组数
…