- 数论问题65一一整数的乘法分拆
李扩继
数据分析深度学习学习方法数学建模算法
整数的乘法分拆实质就是整数的乘法因子数分解。如18=2x9=6x3=2x3x3。整数的乘法分拆与加法分拆有密切的关联,最终用加法分拆来表示。如,a为质数,a^n的乘法分拆就是指数n的加法分拆。整数的乘法分拆相当复杂,如果弄不懂乘法分拆的实质,那么,进行乘法分拆会相当困难。首先,对于一个正整数n要进行质因数幂分解,如18=2x3^2。其次,设定抽屉,然后给抽屉中放置元素,分类进行。用f(n)表示对正
- lisp不是函授型语言_LISP语言
sunlee0520
lisp不是函授型语言
[拼音]:LISPyuyan[外文]:LISP为非数值符号运算而设计的表处理语言。LISP是英文LISTPROCESSING(表处理)的缩写。LISP语言是1960年J.麦卡锡在递归函数论基础上首先设计出来的。LISP语言的形式化程度高,表达力强,适合于描述各种知识和编写问题求解的程序,因此一直是用来研究人工智能的一种基本语言。自然语言中词可以认为是能单独用来构成句子的最小单元,由词可以构成词组,
- 数论问题61一一各种进位制
李扩继
深度学习数学建模大数据学习方法算法
10进位制是普遍使用的数进位制,二进位制是计算机采用的进位制。还有三进位制,四进位制,…等等。那一种进位制都能转化为10进位制。下面介绍这种方法。①10进位制的表示(口诀:逢10进1)如8X1000+7X100+5x10+3=8753。②2进位制的表示(口诀:逢2进1)如2进位制数101101(2)转化为10进制101101=1x2^5+0x2^4+1x2^3+1x2^2+0x2+1=32+8+4
- 求质因数个数
程序猿小假
算法
什么是质因数?质因数:在数论里是指能整除给定正整数的质数。也就是说,如果一个质数是某个数的因数,那么这个质数就是这个数的质因数。例如,对于数字12,它的因数有1、2、3、4、6、12。其中2和3是质数,所以12的质因数是2和3。如何求一个数有多少个质因数呢?举一个例子,方便大家理解~例:求2024有几个质因数?1.从最小的质数开始尝试分解最小的质数是2,我们先看2024能否被2整除。2024/2=
- 计算机密码体制分为哪两类,密码体制的分类.ppt
约会师老马
计算机密码体制分为哪两类
密码体制的分类.ppt密码学基本理论现代密码学起始于20世纪50年代,1949年Shannon的《TheCommunicationTheoryofSecretSystems》奠定了现代密码学的数学理论基础。密码体制分类(1)换位与代替密码体制序列与分组密码体制对称与非对称密钥密码体制数学理论数论信息论复杂度理论数论--数学皇后素数互素模运算,模逆元同余方程组,孙子问题,中国剩余定理因子分解素数梅森
- 致良知之寄诸用明书
BonSun
众所周知,当今社会,父母和社会、学校对学生的期望往往是唯分数论,包括每个人对成功的理解也往往是功名利禄,忽视了最基本的学问。文中提到,花之千叶者无实,为其华美太发露耳。人只有沉下心来,韬光养晦,才能拥有真正的学问和本领。
- Python【math数学函数】
Alan_Lowe
#Pythonpython
Python【math数学函数】文章目录Python【math数学函数】数论与表示函数1.ceil()和floor()2.comb()3.copysign()4.fabs()5.factorial()6.gcd()7.lcm()幂函数与对数函数1.exp()和math.e和pow()2.log()和log2()和log10()3.sqrt(x)三角函数1.asin、acos()、atan()2.s
- python 实现eulers totient欧拉方程算法
luthane
算法python开发语言
eulerstotient欧拉方程算法介绍欧拉函数(Euler’sTotientFunction),通常表示为(),是一个与正整数相关的函数,它表示小于或等于的正整数中与互质的数的数目。欧拉函数在数论和密码学中有广泛的应用。欧拉函数的性质1.**对于质数,有φ(p)=p−1∗∗φ(p)=p−1^{**}φ(p)=p−1∗∗。2.**如果是质数的次幂,即n=pkn=p^kn=pk,则φ(n)=pk−
- 算法设计与分析学习(6)——数论
罗塞菈桔梨萝柚
算法学习算法线性代数
数论整除基本概念若aaa和bbb为整数,且a≠0a≠0a=0若存在整数qqq使得b=aqb=aqb=aq,那么就说aaa可以整除bbb或是bbb被aaa整除,记作a∣ba|ba∣b。aaa也被称为bbb的约数,bbb也被称为a的倍数。若bbb不能被aaa整除,则记作a∤ba\not{|}ba∣b。整数p≠0,±1p≠0,±1p=0,±1,且除了±1,±p±1,±p±1,±p外没有其他的约数
- 数论——欧几里得算法
NarutoTime
数论算法c++数据结构c语言
1.欧几里得简介 欧几里得(希腊文:Ευκλειδης,约公元前330年—公元前275年),古希腊数学家,被称为“几何之父”。他最著名的著作《几何原本》是欧洲数学的基础,在书中他提出五大公设。欧几里得的《几何原本》被广泛的认为是历史上最成功的教科书。欧几里得也写了一些关于透视、圆锥曲线、球面几何学及数论的作品。2.欧几里得算法欧几里得算法用于:求解a和b的最大公约数。最大公约数英文为:Gre
- 数论——扩展欧几里得算法
NOI_yzk
欧几里得&拓展欧几里得(Euclid&Extend-Euclid)欧几里得算法(Euclid)背景:欧几里德算法又称辗转相除法,用于计算两个正整数a,b的最大公约数。——百度百科代码:递推的代码是相当的简洁:intgcd(inta,intb){returnb==0?a:gcd(b,a%b);}分析:方法说了是辗转相除法,自然没有什么好介绍的了。。Fresh肯定会觉得这样递归下去会不会爆栈?实际上在
- 数论学习1(欧几里德算法+唯一分解定理+埃氏筛+拓展欧几里德+同余与模算术)
new出新对象!
数学数算法学习
目录1.唯一分解定理2.欧几里德算法(求最大公约数)3.求最小公倍数4.埃氏筛5.拓展欧几里德算法(1)证明一下线性方程组的正数的最小值是多少,(2)如何通过裴蜀定理退出拓展欧几里得算法(贝祖定理)6.同余与模算术(1)取模运算操作加法取模运算减法取模运算乘法取模运算(2)特殊的取模操作大整数取模幂取模(3)同余式,乘法逆元,费马小定理今天也是小小的开始学习数论方面的知识了,首先数论的入门章节必然
- Collatz 猜想和 Python
不连续小姐
PythonDay4:CollatzConjecture原来总有学生问我,微积分有什么用啊,我说如果微积分学好了,也许抽象代数和数论就能学好,那最后就能像AndrewWiles一样上人物年度杂志的封面了.(AndrewWiles证明了Fermat'sLastTheorem,费玛大定理).[captionid="attachment_1466"align="alignnone"width="300"
- 初等数论--整除--带余除法
WeidanJi
初等数论数学密码学信息安全
初等数论--整除--带余除法概念基本性质带余除法博主本人是初学初等数论(整除+同余+原根),本意是想整理一些较难理解的定理、算法,加深记忆也方便日后查找;如果有错,欢迎指正。我整理成一个系列:初等数论,方便检索。概念初等数论研究对象是整数集合和自然数集合。初等数论研究对象是整数集合和自然数集合。初等数论研究对象是整数集合和自然数集合。b∣a:若a,b∈Z,b≠0,∃c∈Z,使a=bc,则称b整除a
- 河南萌新2024第四场
Pown_ShanYu
算法数据结构
C岗位分配题目大意:有n个岗位,m位志愿者,每个岗位至少需要a个志愿者,并且可以有志愿者可以空闲下来作预备,给出可能的分配情况总数思路:首先将每个岗位分配好至少需要的志愿者,再将剩下的人进行分配,那就满足球同盒不同模型(允许空盒),可用隔板法进行分配,需要额外开设一个空闲岗位用来预备,那么按照4个人去4个岗位,那么为c73,具体操作可看数论模板中发布的隔板法问题,递归求组合数Solved:intn
- 【读书笔记】吴非《致青年教师》(4)
冬儿菇凉
一、精要摘录(48——106页)1.教育教学不能“唯分数论“,比分数重要的是学生思维品质和解决实际问题的能力。2.一名教师心中有使命感,心中有学生才会很在意学生对他的态度,在意学生的接受度。3.作为教师,你要善于向学生问出有意思的问题。4.教育就是要培养好习惯,教是为了达到不需要教学生,不需要老师教了是教学的成功,也是教师的职业追求。5.教师是学习者,在学习上教师首先要郑重其事,学生才有可能养成敬
- 【代码随想录算法训练营Day39】62.不同路径;63. 不同路径 II
想做一只潜水的猪
算法
文章目录❇️Day39第九章动态规划part02✴️今日任务❇️62.不同路径自己的思路自己的代码随想录思路随想录代码❇️63.不同路径II自己的思路自己的代码随想录代码❇️Day39第九章动态规划part02✴️今日任务今天开始逐渐有dp的感觉了,题目不多,就两个不同路径,可以好好研究一下62.不同路径63.不同路径II❇️62.不同路径本题大家掌握动态规划的方法就可以。数论方法有点非主流,很难
- 算法D39 | 动态规划2 | 62.不同路径 63. 不同路径 II
memolaner
算法训练营算法动态规划数据结构c++python
今天开始逐渐有dp的感觉了,题目不多,就两个不同路径,可以好好研究一下62.不同路径本题大家掌握动态规划的方法就可以。数论方法有点非主流,很难想到。代码随想录视频讲解:动态规划中如何初始化很重要!|LeetCode:62.不同路径_哔哩哔哩_bilibili这个题看到路径的表示,第一直觉就是一个组合数的问题,学了一下C++计算组合数防止溢出的小技巧。第二个方法再动态规划完成,重点是把二维的动态规划
- 牛客周赛 Round 35(A,B,C,D,E,F,G)
邪神与厨二病
牛客算法暴力c++数论滑动窗口单调队列贪心构造
这场简单,甚至赛时90分钟不到就AK了。比赛链接,队友题解友链刚入住学校监狱,很不适应,最近难受的要死,加上最近几场CF打的都不顺利,san值要爆掉了,只能慢慢补题了。这场C是个滑动窗口,D是贪心,E是有点麻烦的构造,FG是数论。A小红的字符串切割思路:记录一下字符串长度,然后从中间拆开。code:#include#include#includeusingnamespacestd;strings;
- 算法——数论——同余
戏拈秃笔
数据结构与算法(java版)算法
目录同余一、试题算法训练同余方程同余同余使人们能够用等式的形式简洁地描述整除关系同余:若m(正整数),a和b是整数,a%m==b%m,或(a-b)%m==0,记为ab(modm)求解一元线性同余方程等价于求解二元线性丢番图方程一元线性同余方程,解法看下面第一题二元线性丢番图方程逆:的一个解为a模m的逆一、试题算法训练同余方程问题描述求关于x的同余方程ax≡1(modb)的最小正整数解。输入格式输入
- pku acm 题目分类
moxiaomomo
算法数据结构numbers优化calendarcombinations
1.搜索//回溯2.DP(动态规划)3.贪心北大ACM题分类2009-01-2714.图论//Dijkstra、最小生成树、网络流5.数论//解模线性方程6.计算几何//凸壳、同等安置矩形的并的面积与周长sp;7.组合数学//Polya定理8.模拟9.数据结构//并查集、堆sp;10.博弈论1、排序sp;1423,1694,1723,1727,1763,1788,1828,1838,1840,22
- C++STL之Queue容器
芯片烧毁大师
数据结构C++c++开发语言
C++STL之Queue容器1.再谈队列回顾一下之前所学的队列,队列和栈不同,队列是一种先进先出的数据结构,STL的队列内容极其重要,虽然内容较少但是请务必掌握,STL的队列是快速构建搜索算法以及相关的数论图论的状态存储的基础。2.相关头文件头文件:#include3.初始化格式为:**explicit**queue(**const**container_type&ctnr=container_t
- 数字签名算法MD5withRSA
Just_Paranoid
技术流Clipmd5rsasignatrue
数字签名MD5withRSA,:将正文通过MD5数字摘要后,将密文再次通过生成的RSA密钥加密,生成数字签名,将明文与密文以及公钥发送给对方,对方拿到私钥/公钥对数字签名进行解密,然后解密后的,与明文经过MD5加密进行比较,如果一致则通过使用Signature的API来实现MD5withRSARSA原理:RSA算法基于一个十分简单的数论事实,将两个大素数相乘十分容易,但反过来想要对其乘积进行因式分
- 2301: 不定方程解的个数
jht0105
算法
题目描述输出不定方程解的个数。在数学中,不定方程是数论中的一个重要课题,在各种比赛中也常常出现.对于不定方程,有时我们往往只求非负整数解,现有方程ax+by+c=0,其中x、y为未知量且不超过10000,当给定a、b、c的值以后,可求出n组x、y的非负整数解,n>=0,,其中a,b,c均为[-10000,10000].输入描述一行,三个空格隔开的整数,为a、b、c的值。输出描述一个整数,为合法的解
- python伯努利多项式
微小冷
#sympypython开发语言sympy伯努利数排列组合符号计算
文章目录伯努利数和多项式sympy实现伯努利数是一种在数学、物理和工程中广泛应用的特殊数列,以瑞士数学家雅各布·伯努利(JacobBernoulli)的名字命名,并在许多领域中发挥重要作用。在数学中,它们与斐波那契数列、卡塔兰数、贝尔数等数列有密切联系,可以用于解决循环问题、组合问题和递推关系等数学问题。伯努利数和多项式伯努利(Bernoulli)数是一组在数论和复分析中出现的数,与伯努利多项式有
- 二次剩余问题x的求解及代码实现(python)
JustGo12
数论安全1024程序员节
一、问题引入二次剩余是数论基本概念之一。它是初等数论中非常重要的结果,不仅可用来判断二次同余式是否有解,还有很多用途。C.F.高斯称它为算术中的宝石,他一人先后给出多个证明。[1]研究二次剩余的理论称为二次剩余理论。二次剩余理论在实际上有广泛的应用,包括从噪音工程学到密码学以及大数分解。即关于方x^2≡a(modp)对于这个方程,求出满足条件的x。二、x的求解在上述问题下,根据p值的不同性质,可以
- 【数论】exgcd 扩展欧几里得算法
Texcavator
数论算法
参考:exgcd详解-zzt1208-博客园(cnblogs.com)exgcd(扩展欧几里得算法),用来求形如ax+by=gcd(a,b)ax+by=gcd(a,b)ax+by=gcd(a,b)(a,ba,ba,b为常数)的方程的一组整数解。(如果不确定等号右边是不是gcd,可以先当做gcd,求出来之后验证,是的话就是解,不是的话就不是解)推导见上面的链接,这篇只放个板子codeintexgcd
- 2021-07-30
RX-0493
学了一会数论,好难1.乘法逆元:a/b%p,若a/b在进行取模运算时,会出现精度问题,而且模运算对除法不适用,(没有分配律,大概就这意思)而求出乘法逆元后,可以把原式变为a*x%p的形式,且值不变。a*x≡1(modp)中,a,p为已知量,则x为a的乘法逆元。例题:乘法逆元设p=k*i+r,(1usingnamespacestd;constintN=20000530;intn,p,inv[N];i
- 同余数论性质
clmm_
算法
同余概念当a%m==b%m,说明a和b同余,写作若a≡b(modm)性质衍生出几条性质1.m|abs(a-b),即|a-b|是m的倍数。(注意,0是任何数的倍数)2.当a≡b(modm),c≡d(modm),有ac≡bd(modm)有a+c≡b+d(modm)有a-c≡b-d(modm)证明如下
- 读《爱心与教育》第八天
皮_小皮
作为一名教师,尤其是班主任老师,“培优转差”是教育工作的一项重要内容,读了李镇西老师的《爱心与教育》,自己受到不小的启发,对“优生”的培养和后进生的转化有了新的认识和思考。对“优生”的重新认识——李老师说:“优生”当然应该是指品学兼优的学生,但在现在不少教师、家长的眼中,所谓“优生”更多的是指学习成绩拔尖的学生(即尖子生)。的确,在升学竞争和应试教育的大环境下,很多教育者都以分数论英雄,对“优生”
- LeetCode[位运算] - #137 Single Number II
Cwind
javaAlgorithmLeetCode题解位运算
原题链接:#137 Single Number II
要求:
给定一个整型数组,其中除了一个元素之外,每个元素都出现三次。找出这个元素
注意:算法的时间复杂度应为O(n),最好不使用额外的内存空间
难度:中等
分析:
与#136类似,都是考察位运算。不过出现两次的可以使用异或运算的特性 n XOR n = 0, n XOR 0 = n,即某一
- 《JavaScript语言精粹》笔记
aijuans
JavaScript
0、JavaScript的简单数据类型包括数字、字符创、布尔值(true/false)、null和undefined值,其它值都是对象。
1、JavaScript只有一个数字类型,它在内部被表示为64位的浮点数。没有分离出整数,所以1和1.0的值相同。
2、NaN是一个数值,表示一个不能产生正常结果的运算结果。NaN不等于任何值,包括它本身。可以用函数isNaN(number)检测NaN,但是
- 你应该更新的Java知识之常用程序库
Kai_Ge
java
在很多人眼中,Java 已经是一门垂垂老矣的语言,但并不妨碍 Java 世界依然在前进。如果你曾离开 Java,云游于其它世界,或是每日只在遗留代码中挣扎,或许是时候抬起头,看看老 Java 中的新东西。
Guava
Guava[gwɑ:və],一句话,只要你做Java项目,就应该用Guava(Github)。
guava 是 Google 出品的一套 Java 核心库,在我看来,它甚至应该
- HttpClient
120153216
httpclient
/**
* 可以传对象的请求转发,对象已流形式放入HTTP中
*/
public static Object doPost(Map<String,Object> parmMap,String url)
{
Object object = null;
HttpClient hc = new HttpClient();
String fullURL
- Django model字段类型清单
2002wmj
django
Django 通过 models 实现数据库的创建、修改、删除等操作,本文为模型中一般常用的类型的清单,便于查询和使用: AutoField:一个自动递增的整型字段,添加记录时它会自动增长。你通常不需要直接使用这个字段;如果你不指定主键的话,系统会自动添加一个主键字段到你的model。(参阅自动主键字段) BooleanField:布尔字段,管理工具里会自动将其描述为checkbox。 Cha
- 在SQLSERVER中查找消耗CPU最多的SQL
357029540
SQL Server
返回消耗CPU数目最多的10条语句
SELECT TOP 10
total_worker_time/execution_count AS avg_cpu_cost, plan_handle,
execution_count,
(SELECT SUBSTRING(text, statement_start_of
- Myeclipse项目无法部署,Undefined exploded archive location
7454103
eclipseMyEclipse
做个备忘!
错误信息为:
Undefined exploded archive location
原因:
在工程转移过程中,导致工程的配置文件出错;
解决方法:
 
- GMT时间格式转换
adminjun
GMT时间转换
普通的时间转换问题我这里就不再罗嗦了,我想大家应该都会那种低级的转换问题吧,现在我向大家总结一下如何转换GMT时间格式,这种格式的转换方法网上还不是很多,所以有必要总结一下,也算给有需要的朋友一个小小的帮助啦。
1、可以使用
SimpleDateFormat SimpleDateFormat
EEE-三位星期
d-天
MMM-月
yyyy-四位年
- Oracle数据库新装连接串问题
aijuans
oracle数据库
割接新装了数据库,客户端登陆无问题,apache/cgi-bin程序有问题,sqlnet.log日志如下:
Fatal NI connect error 12170.
VERSION INFORMATION: TNS for Linux: Version 10.2.0.4.0 - Product
- 回顾java数组复制
ayaoxinchao
java数组
在写这篇文章之前,也看了一些别人写的,基本上都是大同小异。文章是对java数组复制基础知识的回顾,算是作为学习笔记,供以后自己翻阅。首先,简单想一下这个问题:为什么要复制数组?我的个人理解:在我们在利用一个数组时,在每一次使用,我们都希望它的值是初始值。这时我们就要对数组进行复制,以达到原始数组值的安全性。java数组复制大致分为3种方式:①for循环方式 ②clone方式 ③arrayCopy方
- java web会话监听并使用spring注入
bewithme
Java Web
在java web应用中,当你想在建立会话或移除会话时,让系统做某些事情,比如说,统计在线用户,每当有用户登录时,或退出时,那么可以用下面这个监听器来监听。
import java.util.ArrayList;
import java.ut
- NoSQL数据库之Redis数据库管理(Redis的常用命令及高级应用)
bijian1013
redis数据库NoSQL
一 .Redis常用命令
Redis提供了丰富的命令对数据库和各种数据库类型进行操作,这些命令可以在Linux终端使用。
a.键值相关命令
b.服务器相关命令
1.键值相关命令
&
- java枚举序列化问题
bingyingao
java枚举序列化
对象在网络中传输离不开序列化和反序列化。而如果序列化的对象中有枚举值就要特别注意一些发布兼容问题:
1.加一个枚举值
新机器代码读分布式缓存中老对象,没有问题,不会抛异常。
老机器代码读分布式缓存中新对像,反序列化会中断,所以在所有机器发布完成之前要避免出现新对象,或者提前让老机器拥有新增枚举的jar。
2.删一个枚举值
新机器代码读分布式缓存中老对象,反序列
- 【Spark七十八】Spark Kyro序列化
bit1129
spark
当使用SparkContext的saveAsObjectFile方法将对象序列化到文件,以及通过objectFile方法将对象从文件反序列出来的时候,Spark默认使用Java的序列化以及反序列化机制,通常情况下,这种序列化机制是很低效的,Spark支持使用Kyro作为对象的序列化和反序列化机制,序列化的速度比java更快,但是使用Kyro时要注意,Kyro目前还是有些bug。
Spark
- Hybridizing OO and Functional Design
bookjovi
erlanghaskell
推荐博文:
Tell Above, and Ask Below - Hybridizing OO and Functional Design
文章中把OO和FP讲的深入透彻,里面把smalltalk和haskell作为典型的两种编程范式代表语言,此点本人极为同意,smalltalk可以说是最能体现OO设计的面向对象语言,smalltalk的作者Alan kay也是OO的最早先驱,
- Java-Collections Framework学习与总结-HashMap
BrokenDreams
Collections
开发中常常会用到这样一种数据结构,根据一个关键字,找到所需的信息。这个过程有点像查字典,拿到一个key,去字典表中查找对应的value。Java1.0版本提供了这样的类java.util.Dictionary(抽象类),基本上支持字典表的操作。后来引入了Map接口,更好的描述的这种数据结构。
&nb
- 读《研磨设计模式》-代码笔记-职责链模式-Chain Of Responsibility
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 业务逻辑:项目经理只能处理500以下的费用申请,部门经理是1000,总经理不设限。简单起见,只同意“Tom”的申请
* bylijinnan
*/
abstract class Handler {
/*
- Android中启动外部程序
cherishLC
android
1、启动外部程序
引用自:
http://blog.csdn.net/linxcool/article/details/7692374
//方法一
Intent intent=new Intent();
//包名 包名+类名(全路径)
intent.setClassName("com.linxcool", "com.linxcool.PlaneActi
- summary_keep_rate
coollyj
SUM
BEGIN
/*DECLARE minDate varchar(20) ;
DECLARE maxDate varchar(20) ;*/
DECLARE stkDate varchar(20) ;
DECLARE done int default -1;
/* 游标中 注册服务器地址 */
DE
- hadoop hdfs 添加数据目录出错
daizj
hadoophdfs扩容
由于原来配置的hadoop data目录快要用满了,故准备修改配置文件增加数据目录,以便扩容,但由于疏忽,把core-site.xml, hdfs-site.xml配置文件dfs.datanode.data.dir 配置项增加了配置目录,但未创建实际目录,重启datanode服务时,报如下错误:
2014-11-18 08:51:39,128 WARN org.apache.hadoop.h
- grep 目录级联查找
dongwei_6688
grep
在Mac或者Linux下使用grep进行文件内容查找时,如果给定的目标搜索路径是当前目录,那么它默认只搜索当前目录下的文件,而不会搜索其下面子目录中的文件内容,如果想级联搜索下级目录,需要使用一个“-r”参数:
grep -n -r "GET" .
上面的命令将会找出当前目录“.”及当前目录中所有下级目录
- yii 修改模块使用的布局文件
dcj3sjt126com
yiilayouts
方法一:yii模块默认使用系统当前的主题布局文件,如果在主配置文件中配置了主题比如: 'theme'=>'mythm', 那么yii的模块就使用 protected/themes/mythm/views/layouts 下的布局文件; 如果未配置主题,那么 yii的模块就使用 protected/views/layouts 下的布局文件, 总之默认不是使用自身目录 pr
- 设计模式之单例模式
come_for_dream
设计模式单例模式懒汉式饿汉式双重检验锁失败无序写入
今天该来的面试还没来,这个店估计不会来电话了,安静下来写写博客也不错,没事翻了翻小易哥的博客甚至与大牛们之间的差距,基础知识不扎实建起来的楼再高也只能是危楼罢了,陈下心回归基础把以前学过的东西总结一下。
*********************************
- 8、数组
豆豆咖啡
二维数组数组一维数组
一、概念
数组是同一种类型数据的集合。其实数组就是一个容器。
二、好处
可以自动给数组中的元素从0开始编号,方便操作这些元素
三、格式
//一维数组
1,元素类型[] 变量名 = new 元素类型[元素的个数]
int[] arr =
- Decode Ways
hcx2013
decode
A message containing letters from A-Z is being encoded to numbers using the following mapping:
'A' -> 1
'B' -> 2
...
'Z' -> 26
Given an encoded message containing digits, det
- Spring4.1新特性——异步调度和事件机制的异常处理
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- squid3(高命中率)缓存服务器配置
liyonghui160com
系统:centos 5.x
需要的软件:squid-3.0.STABLE25.tar.gz
1.下载squid
wget http://www.squid-cache.org/Versions/v3/3.0/squid-3.0.STABLE25.tar.gz
tar zxf squid-3.0.STABLE25.tar.gz &&
- 避免Java应用中NullPointerException的技巧和最佳实践
pda158
java
1) 从已知的String对象中调用equals()和equalsIgnoreCase()方法,而非未知对象。 总是从已知的非空String对象中调用equals()方法。因为equals()方法是对称的,调用a.equals(b)和调用b.equals(a)是完全相同的,这也是为什么程序员对于对象a和b这么不上心。如果调用者是空指针,这种调用可能导致一个空指针异常
Object unk
- 如何在Swift语言中创建http请求
shoothao
httpswift
概述:本文通过实例从同步和异步两种方式上回答了”如何在Swift语言中创建http请求“的问题。
如果你对Objective-C比较了解的话,对于如何创建http请求你一定驾轻就熟了,而新语言Swift与其相比只有语法上的区别。但是,对才接触到这个崭新平台的初学者来说,他们仍然想知道“如何在Swift语言中创建http请求?”。
在这里,我将作出一些建议来回答上述问题。常见的
- Spring事务的传播方式
uule
spring事务
传播方式:
新建事务
required
required_new - 挂起当前
非事务方式运行
supports
&nbs