《剑指Offer》面试题6:重建二叉树

《剑指Offer》面试题6:重建二叉树

知识点

    1.对二叉树前序遍历、中序遍历的理解程度

     2.递归分解复杂问题

题目描述

    输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6},则重建二叉树并返回。

解题思路

《剑指Offer》面试题6:重建二叉树_第1张图片

《剑指Offer》面试题6:重建二叉树_第2张图片

测试用例


《剑指Offer》面试题6:重建二叉树_第3张图片

代码(原书)

/* 《剑指Offer——名企面试官精讲典型编程题》代码
 著作权所有者:何海涛*/

#include 
#include 
using namespace std;

struct BinaryTreeNode
{
	int m_nValue;
	BinaryTreeNode *m_pLeft;
	BinaryTreeNode *m_pRight;
};

BinaryTreeNode* ConstructCore(int* startPreorder, int* endPreorder, int* startInorder, int* endInorder);

BinaryTreeNode* Construct(int* preorder, int* inorder, int length)
{
	if (preorder == NULL || inorder == NULL || length <= 0)
		return NULL;

	return ConstructCore(preorder, preorder + length - 1,
		inorder, inorder + length - 1);
}

BinaryTreeNode* ConstructCore(int* startPreorder, int* endPreorder,int* startInorder, int* endInorder)
{
	// 前序遍历序列的第一个数字是根结点的值
	int rootValue = startPreorder[0];
	BinaryTreeNode* root = new BinaryTreeNode();
	root->m_nValue = rootValue;
	root->m_pLeft = root->m_pRight = NULL;

	if (startPreorder == endPreorder)
	{
		if (startInorder == endInorder && *startPreorder == *startInorder)
			return root;
		else
			throw std::exception("Invalid input.");
	}

	// 在中序遍历中找到根结点的值
	int* rootInorder = startInorder;
	while (rootInorder <= endInorder && *rootInorder != rootValue)
		++rootInorder;

	if (rootInorder == endInorder && *rootInorder != rootValue)
		throw std::exception("Invalid input.");

	int leftLength = rootInorder - startInorder;
	int* leftPreorderEnd = startPreorder + leftLength;
	if (leftLength > 0)
	{
		// 构建左子树
		root->m_pLeft = ConstructCore(startPreorder + 1, leftPreorderEnd,
			startInorder, rootInorder - 1);
	}
	if (leftLength < endPreorder - startPreorder)
	{
		// 构建右子树
		root->m_pRight = ConstructCore(leftPreorderEnd + 1, endPreorder,
			rootInorder + 1, endInorder);
	}

	return root;
}

// ====================测试代码====================
void PrintTreeNode(BinaryTreeNode* pNode)
{
	if (pNode != NULL)
	{
		printf("value of this node is: %d\n", pNode->m_nValue);

		if (pNode->m_pLeft != NULL)
			printf("value of its left child is: %d.\n", pNode->m_pLeft->m_nValue);
		else
			printf("left child is null.\n");

		if (pNode->m_pRight != NULL)
			printf("value of its right child is: %d.\n", pNode->m_pRight->m_nValue);
		else
			printf("right child is null.\n");
	}
	else
	{
		printf("this node is null.\n");
	}

	printf("\n");
}

void PrintTree(BinaryTreeNode* pRoot)
{
	PrintTreeNode(pRoot);

	if (pRoot != NULL)
	{
		if (pRoot->m_pLeft != NULL)
			PrintTree(pRoot->m_pLeft);

		if (pRoot->m_pRight != NULL)
			PrintTree(pRoot->m_pRight);
	}
}

void DestroyTree(BinaryTreeNode* pRoot)
{
	if (pRoot != NULL)
	{
		BinaryTreeNode* pLeft = pRoot->m_pLeft;
		BinaryTreeNode* pRight = pRoot->m_pRight;

		delete pRoot;
		pRoot = NULL;

		DestroyTree(pLeft);
		DestroyTree(pRight);
	}
}
void Test(char* testName, int* preorder, int* inorder, int length)
{
	if (testName != NULL)
		printf("%s begins:\n", testName);

	printf("The preorder sequence is: ");
	for (int i = 0; i < length; ++i)
		printf("%d ", preorder[i]);
	printf("\n");

	printf("The inorder sequence is: ");
	for (int i = 0; i < length; ++i)
		printf("%d ", inorder[i]);
	printf("\n");

	try
	{
		BinaryTreeNode* root = Construct(preorder, inorder, length);
		PrintTree(root);

		DestroyTree(root);
	}
	catch (std::exception& exception)
	{
		printf("Invalid Input.\n");
	}
}

// 普通二叉树
//              1
//           /     \
//          2       3  
//         /       / \
//        4       5   6
//         \         /
//          7       8
void Test1()
{
	const int length = 8;
	int preorder[length] = { 1, 2, 4, 7, 3, 5, 6, 8 };
	int inorder[length] = { 4, 7, 2, 1, 5, 3, 8, 6 };

	Test("Test1", preorder, inorder, length);
}

// 所有结点都没有右子结点
//            1
//           / 
//          2   
//         / 
//        3 
//       /
//      4
//     /
//    5
void Test2()
{
	const int length = 5;
	int preorder[length] = { 1, 2, 3, 4, 5 };
	int inorder[length] = { 5, 4, 3, 2, 1 };

	Test("Test2", preorder, inorder, length);
}

// 所有结点都没有左子结点
//            1
//             \ 
//              2   
//               \ 
//                3 
//                 \
//                  4
//                   \
//                    5
void Test3()
{
	const int length = 5;
	int preorder[length] = { 1, 2, 3, 4, 5 };
	int inorder[length] = { 1, 2, 3, 4, 5 };

	Test("Test3", preorder, inorder, length);
}

// 树中只有一个结点
void Test4()
{
	const int length = 1;
	int preorder[length] = { 1 };
	int inorder[length] = { 1 };

	Test("Test4", preorder, inorder, length);
}

// 完全二叉树
//              1
//           /     \
//          2       3  
//         / \     / \
//        4   5   6   7
void Test5()
{
	const int length = 7;
	int preorder[length] = { 1, 2, 4, 5, 3, 6, 7 };
	int inorder[length] = { 4, 2, 5, 1, 6, 3, 7 };

	Test("Test5", preorder, inorder, length);
}

// 输入空指针
void Test6()
{
	Test("Test6", NULL, NULL, 0);
}

// 输入的两个序列不匹配
void Test7()
{
	const int length = 7;
	int preorder[length] = { 1, 2, 4, 5, 3, 6, 7 };
	int inorder[length] = { 4, 2, 8, 1, 6, 3, 7 };

	Test("Test7: for unmatched input", preorder, inorder, length);
}

int main()
{
	Test1();
	Test2();
	Test3();
	Test4();
	Test5();
	Test6();
	Test7();
	system("pause");
	return 0;
}

//============================输出结果==============================================
Test1 begins :
The preorder sequence is : 1 2 4 7 3 5 6 8
The inorder sequence is : 4 7 2 1 5 3 8 6
value of this node is : 1
value of its left child is : 2.
value of its right child is : 3.

value of this node is : 2
value of its left child is : 4.
right child is null.

value of this node is : 4
left child is null.
value of its right child is : 7.

value of this node is : 7
left child is null.
right child is null.

value of this node is : 3
value of its left child is : 5.
value of its right child is : 6.

value of this node is : 5
left child is null.
right child is null.

value of this node is : 6
value of its left child is : 8.
right child is null.

value of this node is : 8
left child is null.
right child is null.

Test2 begins :
The preorder sequence is : 1 2 3 4 5
The inorder sequence is : 5 4 3 2 1
value of this node is : 1
value of its left child is : 2.
right child is null.

value of this node is : 2
value of its left child is : 3.
right child is null.

value of this node is : 3
value of its left child is : 4.
right child is null.

value of this node is : 4
value of its left child is : 5.
right child is null.

value of this node is : 5
left child is null.
right child is null.

Test3 begins :
The preorder sequence is : 1 2 3 4 5
The inorder sequence is : 1 2 3 4 5
value of this node is : 1
left child is null.
value of its right child is : 2.

value of this node is : 2
left child is null.
value of its right child is : 3.

value of this node is : 3
left child is null.
value of its right child is : 4.

value of this node is : 4
left child is null.
value of its right child is : 5.

value of this node is : 5
left child is null.
right child is null.

Test4 begins :
The preorder sequence is : 1
The inorder sequence is : 1
value of this node is : 1
left child is null.
right child is null.

Test5 begins :
The preorder sequence is : 1 2 4 5 3 6 7
The inorder sequence is : 4 2 5 1 6 3 7
value of this node is : 1
value of its left child is : 2.
value of its right child is : 3.

value of this node is : 2
value of its left child is : 4.
value of its right child is : 5.

value of this node is : 4
left child is null.
right child is null.

value of this node is : 5
left child is null.
right child is null.

value of this node is : 3
value of its left child is : 6.
value of its right child is : 7.

value of this node is : 6
left child is null.
right child is null.

value of this node is : 7
left child is null.
right child is null.

Test6 begins :
The preorder sequence is :
The inorder sequence is :
this node is null.

Test7 : for unmatched input begins :
The preorder sequence is : 1 2 4 5 3 6 7
The inorder sequence is : 4 2 8 1 6 3 7
Invalid Input.
请按任意键继续. . .

代码(牛客网)

 Definition for binary tree
 struct TreeNode 
 {
      int val;
      TreeNode *left;
      TreeNode *right;
      TreeNode(int x) : val(x), left(NULL), right(NULL) {}
  };
 
class Solution {
public:
    TreeNode* reConstructBinaryTree(vector pre,vector vin) 
    {
        if(pre.empty() || vin.empty())                  //若前序或中序序列为空,返回NULL
            return NULL;
        if(pre.size() != vin.size())                    //若输入的前序和中序序列长度不一致,返回NULL
            return NULL;
        
        TreeNode *root = new TreeNode(pre.front());     //前序序列的第一个数字为二叉树的根结点值,由此创建根结点
        vector::iterator rootInIndex;
        rootInIndex=find(vin.begin(),vin.end(),pre.front());    //在中序序列中找到根结点所在位置
        if(rootInIndex==vin.end())                               //若在中序序列中没有找到根结点,返回NULL
            return NULL;
       
        int leftLength = rootInIndex - vin.begin();             //计算左子树结点个数
        vector::iterator leftPreEndIndex = pre.begin()+leftLength;    //前序序列中左子树最后一个结点所在位置
        vector::iterator temp1, temp2;
        
        if(leftLength>0)                                        //左子树存在,构建左子树
        {
            vector preOfLeft;   //左子树前序序列
            vector vinOfLeft;   //左子树中序序列
            
            
            temp1 = pre.begin()+1;   //左子树前序序列起始位置
            temp2 = vin.begin();     //左子树中序序列起始位置
            while(temp2 != rootInIndex)
            {
                preOfLeft.push_back(*temp1++);
                vinOfLeft.push_back(*temp2++);
            }
            root->left = reConstructBinaryTree(preOfLeft, vinOfLeft);    //递归实现
        }
        
        if(leftLength  preOfRight;
            vector vinOfRight;
            temp1 = leftPreEndIndex+1;
            temp2 = rootInIndex+1;
            while(temp2 != vin.end())
            {
                preOfRight.push_back(*temp1++);
                vinOfRight.push_back(*temp2++);
               
            }
            root->right = reConstructBinaryTree(preOfRight, vinOfRight);
        }
        return root;
    }
};



你可能感兴趣的:(【专项】《剑指Offer》)