求 ∑ i = n n ∑ j = 1 m g c d ( i , j ) = = k ( k ∈ p r i m e ) \sum_{i = n} ^{n} \sum_{j = 1} ^{m} gcd(i, j) == k (k \in prime) ∑i=nn∑j=1mgcd(i,j)==k(k∈prime)
对上面式子进行化简:
= ∑ k = 1 n ∑ i = 1 n k ∑ j = 1 m k g c d ( i , j ) = = 1 , k ∈ p r i m e = \sum_{k = 1} ^{n} \sum_{i = 1} ^{\frac{n}{k}}\sum_{j = 1} ^{\frac{m}{k}}gcd(i, j) == 1, k \in prime =k=1∑ni=1∑knj=1∑kmgcd(i,j)==1,k∈prime
= ∑ k = 1 n ∑ i = 1 n k ∑ j = 1 m k ∑ d ∣ g c d ( i , j ) μ ( d ) , k ∈ p r i m e = \sum_{k = 1} ^{n} \sum_{i = 1} ^{\frac{n}{k}}\sum_{j = 1} ^{\frac{m}{k}}\sum_{d\mid gcd(i, j)}\mu(d) , k \in prime =k=1∑ni=1∑knj=1∑kmd∣gcd(i,j)∑μ(d),k∈prime
= ∑ k = 1 n ∑ d = 1 n k μ ( d ) n k d m k d , k ∈ p r i m e = \sum_{k = 1} ^{n} \sum_{d = 1} ^{\frac{n}{k}} \mu(d) \frac{n}{kd}\frac{m}{kd} , k \in prime =k=1∑nd=1∑knμ(d)kdnkdm,k∈prime
我们另 t = k d t = kd t=kd
= ∑ t = 1 n n t m t ∑ k ∣ t μ ( t k ) , k ∈ p r i m e = \sum_{t = 1} ^{n}\frac{n}{t}\frac{m}{t}\sum_{k \mid t}\mu(\frac{t}{k}), k \in prime =t=1∑ntntmk∣t∑μ(kt),k∈prime
∑ k ∣ t μ ( t k ) , k ∈ p r i m e \sum_{k \mid t}\mu(\frac{t}{k}), k \in prime ∑k∣tμ(kt),k∈prime这一项我们显然可以通过类埃筛求得,之后我们只要对前面的进行除法分块即可。
最后一个测试点刚好卡着时间过去的。
/*
Author : lifehappy
*/
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#include
#define mp make_pair
#define pb push_back
#define endl '\n'
#define mid (l + r >> 1)
#define lson rt << 1, l, mid
#define rson rt << 1 | 1, mid + 1, r
#define ls rt << 1
#define rs rt << 1 | 1
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> pii;
const double pi = acos(-1.0);
const double eps = 1e-7;
const int inf = 0x3f3f3f3f;
inline ll read() {
ll f = 1, x = 0;
char c = getchar();
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f * x;
}
const int N = 1e7 + 10;
bool st[N];
vector<int> prime;
int mu[N], n, m;
ll sum[N];
void mobius() {
st[0] = st[1] = mu[1] = 1;
for(int i = 2; i < N; i++) {
if(!st[i]) {
prime.pb(i);
mu[i] = -1;
}
for(int j = 0; j < prime.size() && i * prime[j] < N; j++) {
st[i * prime[j]] = 1;
if(i % prime[j] == 0) {
mu[i * prime[j]] = 0;
break;
}
mu[i * prime[j]] = -mu[i];
}
}
for(int i = 0; i < prime.size(); i++) {
for(int j = 1; prime[i] * j < N; j++) {
sum[j * prime[i]] += mu[j];
}
}
for(int i = 1; i < N; i++) sum[i] += sum[i - 1];
}
int main() {
// freopen("in.txt", "r", stdin);
// freopen("out.txt", "w", stdout);
// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
mobius();
int T = read();
while(T--) {
n = read(), m = read();
if(n > m) swap(n, m);
ll ans = 0;
for(ll l = 1, r; l <= n; l = r + 1) {
r = min(n / (n / l), m / (m / l));
ans += 1ll * (sum[r] - sum[l - 1]) * (n / l) * (m / l);
}
printf("%lld\n", ans);
}
return 0;
}