Ti的C28x系列的DSP(28069)(28377)使用经验,ADC经验

笔者使用过的项目中,使用的ADC都是DSP的片内ADC,使用片内ADC的好处是,转换速度快,节约成本,这是相比片外ADC的优势。

DSP_28069的ADC精度是12位,DSP_28377D的ADC精度可以选择为12位,也可以选择为16位,笔者这里采用的是12位,两种DSP的采样模式都是单端模式。

DSP的ADC采样精度和参考电压有很大的关系,一般选择外部参考电压,参考电压一定要加RC滤波电路。

计算公式如下:

Ti的C28x系列的DSP(28069)(28377)使用经验,ADC经验_第1张图片

关于ADC其他方面的原理,这里就不作介绍了,如果读者想了解更多,可以搜搜其他博客看看。

笔者在项目中使用ADC,基本上只涉及以下几个方面:

  • ADC的初始化

ADC初始化,主要分为两个部分,ADC的模式选择,(精度模式、采样方式(差分或单端)),中断触发时刻,使能中断等。

void InitAdcPart1(void)
{

	EALLOW;
	SysCtrlRegs.PCLKCR0.bit.ADCENCLK = 1;
	(*Device_cal)();
	EDIS;

	EALLOW;
	AdcRegs.ADCCTL1.bit.ADCBGPWD  = 1;      // Power ADC BG
	AdcRegs.ADCCTL1.bit.ADCREFPWD = 1;      // Power reference
	AdcRegs.ADCCTL1.bit.ADCPWDN   = 1;      // Power ADC
	AdcRegs.ADCCTL1.bit.ADCENABLE = 1;      // Enable ADC
	AdcRegs.ADCCTL1.bit.ADCREFSEL = 1;      // External VREFHI or VREFLO pins used for             
                                            //reference generation
    EDIS;

    DELAY_US(1000L);         // Delay before converting ADC channels

    EALLOW;
    AdcRegs.ADCCTL2.bit.CLKDIV2EN = 0;  //ADCCLK = SYSCLK = 80Mhz
    EDIS;

    DELAY_US(1000L);         // Delay before converting ADC channels
}


void InitAdcPart2(void)
{
	EALLOW;
	AdcRegs.ADCCTL2.bit.ADCNONOVERLAP = 1;	// Overlap of sample is not allowed
	AdcRegs.ADCSAMPLEMODE.all = 0;          //  Single sample mode

                                       //物理采样通道选择
	AdcRegs.ADCSOC0CTL.bit.CHSEL = 0;  //ADCINA0
	AdcRegs.ADCSOC1CTL.bit.CHSEL = 1;
	AdcRegs.ADCSOC2CTL.bit.CHSEL = 2;
	AdcRegs.ADCSOC3CTL.bit.CHSEL = 3;
	AdcRegs.ADCSOC4CTL.bit.CHSEL = 4;
	AdcRegs.ADCSOC5CTL.bit.CHSEL = 5;
	AdcRegs.ADCSOC6CTL.bit.CHSEL = 6;
	AdcRegs.ADCSOC7CTL.bit.CHSEL = 7;  //ADCINA7
	AdcRegs.ADCSOC8CTL.bit.CHSEL = 8;  //ADCINB0
	AdcRegs.ADCSOC9CTL.bit.CHSEL = 9;
	AdcRegs.ADCSOC10CTL.bit.CHSEL= 10;
	AdcRegs.ADCSOC11CTL.bit.CHSEL= 11;
	AdcRegs.ADCSOC12CTL.bit.CHSEL= 12;
	AdcRegs.ADCSOC13CTL.bit.CHSEL= 13;
	AdcRegs.ADCSOC14CTL.bit.CHSEL= 14;
	AdcRegs.ADCSOC15CTL.bit.CHSEL= 15;  //ADCINB7

                                        //采样保持时间
                                        //Sample window =(19 + 1 clock cycles).
	AdcRegs.ADCSOC0CTL.bit.ACQPS  = 19;
	AdcRegs.ADCSOC1CTL.bit.ACQPS  = 19;
	AdcRegs.ADCSOC2CTL.bit.ACQPS  = 19;
	AdcRegs.ADCSOC3CTL.bit.ACQPS  = 19;
	AdcRegs.ADCSOC4CTL.bit.ACQPS  = 19;
	AdcRegs.ADCSOC5CTL.bit.ACQPS  = 19;
	AdcRegs.ADCSOC6CTL.bit.ACQPS  = 19;
	AdcRegs.ADCSOC7CTL.bit.ACQPS  = 19;
	AdcRegs.ADCSOC8CTL.bit.ACQPS  = 19;
	AdcRegs.ADCSOC9CTL.bit.ACQPS  = 19;
	AdcRegs.ADCSOC10CTL.bit.ACQPS = 19;
	AdcRegs.ADCSOC11CTL.bit.ACQPS = 19;
	AdcRegs.ADCSOC12CTL.bit.ACQPS = 19;
	AdcRegs.ADCSOC13CTL.bit.ACQPS = 19;
	AdcRegs.ADCSOC14CTL.bit.ACQPS = 19;
	AdcRegs.ADCSOC15CTL.bit.ACQPS = 19;


                                          //ADC触发源
	                                      //4//set SOC0 start trigger on XIN2
	AdcRegs.ADCSOC0CTL.bit.TRIGSEL  = 4;  //4;//  // 5 set SOC0 start trigger on EPWM1A
	AdcRegs.ADCSOC1CTL.bit.TRIGSEL  = 4; //4;
	AdcRegs.ADCSOC2CTL.bit.TRIGSEL  = 4; //4;
	AdcRegs.ADCSOC3CTL.bit.TRIGSEL  = 4; //4;
	AdcRegs.ADCSOC4CTL.bit.TRIGSEL  = 4; //4;
	AdcRegs.ADCSOC5CTL.bit.TRIGSEL  = 4; //4;
	AdcRegs.ADCSOC6CTL.bit.TRIGSEL  = 4; //4;
	AdcRegs.ADCSOC7CTL.bit.TRIGSEL  = 4; //4;
	AdcRegs.ADCSOC8CTL.bit.TRIGSEL  = 4; //4;
	AdcRegs.ADCSOC9CTL.bit.TRIGSEL  = 4; //4;
	AdcRegs.ADCSOC10CTL.bit.TRIGSEL = 4; //4;
	AdcRegs.ADCSOC11CTL.bit.TRIGSEL = 4; //4;
	AdcRegs.ADCSOC12CTL.bit.TRIGSEL = 4; //4;
	AdcRegs.ADCSOC13CTL.bit.TRIGSEL = 4; //4;
	AdcRegs.ADCSOC14CTL.bit.TRIGSEL = 4; //4;
	AdcRegs.ADCSOC15CTL.bit.TRIGSEL = 4; //4;

	EDIS;

}

void InitAdcINT(void)
{
	EALLOW;
	AdcRegs.ADCCTL1.bit.INTPULSEPOS	= 1;	// ADCINT1 trips after AdcResults latch
	AdcRegs.INTSEL1N2.bit.INT1CONT  = 0;	// Disable ADCINT1 Continuous mode
	AdcRegs.INTSEL1N2.bit.INT1SEL 	= 15;   // EOC15 is trigger for ADCINT1
	EALLOW;
}


void EnableAdcInterrupt(void)
{
	EALLOW;
	AdcRegs.INTSEL1N2.bit.INT1E   = 1;	// Enabled ADCINT1
	EDIS;
}

ADC的触发源,即表示如何启动ADC转换,一般用PWM启动ADC,或者外部GPIO启动ADC,比如FPGA外部触发ADC。

  • ADC转换的结果ADCRESULT

ADCRESULT表示数据采集的源头,各种电压电流,都是通过这个公式(ADCRESULT - 零漂)* 系数而得到的。

  • ADC的转换完成后触发的中断

   ADC触发的中断,一般是整个DSP系统中的主中断,这个中断里会运行一些数据采集、算法、故障保护等实时性要求比较高的函数。

void InitInterrupt(void)
{

	EALLOW;  // This is needed to write to EALLOW protected register

	PieVectTable.ADCINT1   = &Interrupt_Adc1;

	EDIS;    // This is needed to disable write to EALLOW protected registers

	PieCtrlRegs.PIEIFR1.bit.INTx1 = 0;
	PieCtrlRegs.PIEIER1.bit.INTx1 = 1;	// Enable   ADC1 INT 1.1 in the PIE

	PieCtrlRegs.PIEACK.all = 0x0FFF;		//set all ack to 0

}


__interrupt void  Interrupt_Adc1(void)
{

      ServeMainInt();

      AdcRegs.ADCINTFLGCLR.bit.ADCINT1 = 1;	    //Clear ADCINT1 flag reinitialize 
                                                //for next SOC
      PieCtrlRegs.PIEACK.all |= PIEACK_GROUP1;  // Acknowledge interrupt to PIE

}

 

你可能感兴趣的:(DSP使用经验)