FIR和IIR的区别

 

FIR:有限脉冲响应滤波器。有限说明其脉冲响应是有限的。与IIR相比,FIR具有线性相位、容易设计的优点。这也就说明,IIR滤波器具有相位不线性,不容易设计的缺点。而另一方面,FIR却拥有IIR所不具有的缺点,那就是设计同样参数的滤波器,FIR比IIR需要更多的参数。这也就说明,要增加DSP的计算量。DSP需要更多的计算时间,对DSP的实时性有影响。

以下都是低通滤波器的设计。

FIR(有限脉冲响应滤波器)的设计:   

   FIR滤波器的设计比较简单,就是要设计一个数字滤波器去逼近一个理想的低通滤波器。通常这个理想的低通滤波器在频域上是一个矩形窗。根据傅里叶变换我们可以知道,此函数在时域上是一个采样函数。通常此函数的表达式为:sa(n)=sin(n∩)/n∏,但是这个采样序列是无限的,计算机是无法对它进行计算的。故我们需要对此采样函数进行截断处理。也就是加一个窗函数。就是传说中的加窗。也就是把这个时域采样序列去乘一个窗函数,就把这个无限的时域采样序列截成了有限个序列值。但是加窗后对此采样序列的频域也产生了影响:此时的频域便不在是一个理想的矩形窗,而是成了一个有过渡带,阻带有波动的低通滤波器。通常根据所加的窗函数的不同,对采样信号加窗后,在频域所得的低通滤波器的阻带衰减也不同。通常我们就是根据此阻带衰减去选择一个合适的窗函数。如矩形窗、汉宁窗、汉明窗、BLACKMAN窗、凯撒窗等。选择一个具体的窗函数之后,根据所设计滤波器的参数来计算所需的阶数、此窗函数的表达式。然后用这个窗函数去和采样序列相乘,就可以得到实际滤波器的脉冲响应。

IIR(无限脉冲响应滤波器)的设计(双线性变换法):

   IIR的设计理念是这样的:根据所要设计滤波器的参数去确定一个模拟滤波器的传输函数,然后再根据这个传输函数,通过双线性变换、或脉冲响应不变法来进行数字滤波器的设计。它的设计比较复杂,复杂在于它的模拟滤波器传输函数H(s)的确定。这一点我们可以让软件来实现。然后,我们说一下它的具体实现步骤:首先你要先确定你需要一个什么样的滤波器,巴特沃斯型,切比雪夫型,还是其它什么型的滤波器。当你选定一个型号后,你就可以根据设计参数和这个滤波器的计算公式来确定其阶数、传输函数的表达式。通常这个过程中还存在预扭曲的问题(这只是双线性变换法所需要注意的问题,脉冲响应不变法不存在这种问题)。确定H(S)后,就可以通过双线性变换得到其数字域的差分方程。

补充:

 

1. 在相同技术指标下,IIR(无限脉冲响应滤波器)滤波器由于存在着输出对输入的反馈,因而可用比FIR滤波器较少的阶数来满足指标的要求,这样一来所用的存储单元少,运算次数少,较为经济。例如用频率抽样法设计阻带衰减为-20db的FIR(有限脉冲响应滤波器)滤波器,其阶数要33阶才能达到,而如果用双线性变换法设计只需4-5阶的切贝雪夫滤波器,即可达到指标要求,所以FIR滤波器的阶数要高5-10倍左右。

2. FIR滤波器可得到严格的线性相位,而IIR滤波器则做不到这一点,IIR滤波器选择性愈好,则相位的非线性愈严重,困而,如果IIR滤波器要得到线性相位,又要满足幅度滤波的技术要求,必须加全通网络进行相位校正,这同样会大大增加滤波器的阶数,从这一点上看,FIR滤波器又优于IIR滤波器。

3. FIR滤波器主要采用非递归结构,因而从理论上以及时性从实际的有限精度的运算中,都是稳定的。有限精度运算误差也较小,IIR滤波器必须采用递归的结构,极点必须在Z平面单位圆内,才能稳定,这种结构,运算中的四舍五入处理,有时会引起寄生振荡。

4. FIR滤波器,由于冲激响应是有限长的,因而可以用快速傅里叶变换算法,这样运算速度可以快得多,IIR滤波器则不能这样运算。

5. 从设计上看,IIR滤波器可以利用模拟滤波器设计的现成闭合公式、数据和表格,因而计算工作量较小,对计算工具要求不高。FIR滤波器则一般没有现成的设计公式,窗函数法只给出窗函数的计算工式,但计算通带、阻带衰衰减仍无显示表达式。一般FIR滤波器设计只有计算机程序可资利用,因而要借助于计算机。

6. IIR滤波器主要是设计规格化的、频率特性为分段常数的标准低通、高通、带通、带阻、全通滤波器,而FIR滤波器则要灵活得多,例如频率抽样设计法,可适应各种幅度特性的要求,因而FIR滤波器则要灵活得多,例如频率器可设计出理想正交变换器、理想微分器、线性调频器等各种网络,适应性较广。而且,目前已有许多FIR滤波器的计算机程序可供使用。

你可能感兴趣的:(#,数字信号处理)