计算机组成原理学习——流水线技术浅析

流水线技术是一种将每条指令分解为多步,并让各步操作重叠,从而实现几条指令并行处理的技术。
流水线(pipeline)技术是指在程序执行时多条指令重叠进行操作的一种准并行处理实现技术。流水线的工作方式就象工业生产上的装配流水线。在CPU中由5—6个不同功能的电路单元组成一条指令处理流水线,然后将一条X86指令分成5—6步后再由这些电路单元分别执行,这样就能实现在一个CPU时钟周期完成一条指令,因此提高CPU的运算速度。经典奔腾每条整数流水线都分为四级流水,即指令预取、译码、执行、写回结果,浮点流水又分为八级流水。
流水线技术通过多个功能部件并行工作来缩短程序执行时间,提高处理器核的效率和吞吐率,从而成为微处理器设计中最为重要的技术之一。
ARM7处理器核使用了典型三级流水线的冯·诺伊曼结构,ARM9系列则采用了基于五级流水线的哈佛结构。通过增加流水线级数简化了流水线各级的逻辑,进一步提高了处理器的性能。ARM7的三级流水线在执行单元完成了大量的工作,包括与操作数相关的寄存器和存储器读写操作、ALU操作以及相关器件之间的数据传输。执行单元的工作往往占用多个时钟周期,从而成为系统性能的瓶颈。ARM9采用了更为高效的五级流水线设计,增加了2个功能部件分别访问存储器并写回结果,且将读寄存器的操作转移到译码部件上,使流水线各部件在功能上更平衡;同时其哈佛架构避免了数据访问和取指的总线冲突。
ARM7流水线技术
ARM7系列处理器中每条指令分取指、译码、执行三个阶段,分别在不同的功能部件上依次独立完成。取指部件完成从存储器装载一条指令,通过译码部件产生下一周期数据路径需要的控制信号,完成寄存器的解码,再送到执行单元完成寄存器的读取、ALU运算及运算结果的写回,需要访问存储器的指令完成存储器的访问。流水线上虽然一条指令仍需3个时钟周期来完成,但通过多个部件并行,使得处理器的吞吐率约为每个周期一条指令,提高了流式指令的处理速度,从而可达到O.9 MIPS/MHz的指令执行速度。
在三级流水线下,通过R15访问PC(程序计数器)时会出现取指位置和执行位置不同的现象。这须结合流水线的执行情况考虑,取指部件根据PC取指,取指完成后PC+4送到PC,并把取到的指令传递给译码部件,然后取指部件根据新的PC取指。因为每条指令4字节,故PC值等于当前程序执行位置+8。
ARM9流水线技术
ARM9系列处理器的流水线分为取指、译码、执行、访存、回写。取指部件完成从指令存储器取指;译码部件读取寄存器操作数,与三级流水线中不占有数据路径区别很大;执行部件产生ALU运算结果或产生存储器地址(对于存储器访问指令来讲);访存部件访问数据存储器;回写部件完成执行结果写回寄存器。把三级流水线中的执行单元进一步细化,减少了在每个时钟周期内必须完成的工作量,进而允许使用较高的时钟频率,且具有分开的指令和数据存储器,减少了冲突的发生,每条指令的平均周期数明显减少。
流水线技术提高了处理器的并行性,与串行CPU相比大大提高了处理器性能。通过调节指令序列的方法又能够有效地避免流水线冲突的发生,从而提高了流水线的执行效率。
 
1.流水线深度(级数)增加所带来的影响。
 
  

ARM7 采用 3 级流水线, ARM9 采用 5 线流水线, ARM10 采用 6 级流水线, 但是随着流水线深度的增加,指令的吞吐量提高了,每一段的工作量被消减了,使得处理器可以工作在更高的频率,同时也改善了性能,但系统延时 (latency) 也增加了,这是因为在内核执行一条指令前,需要更多的周期来填充流水线。并且,时钟频率的增加,指令执行周期也相应缩减了,这就要求减小指令执行周期的时间,也就对硬件设计带来了更大的要求。所以,流水线深度并不是越深越好。

 

2.流水线执行特点

ARM 流水线的一条指令只有在完全通过 ” 执行 ” 阶段才被处理 。这句话很重要,也就是说,当处理器开始取第四条指令时,第一条指令才完成执行。我们如果不考虑流水线的设计,只看它的原理,其实是很简单的,他的复杂之处在于发生流水线冒险时,如何保证其工作得仍然很好。

流水线冒险一般分为控制冒险和数据冒险,而数据冒险一般可分为阻塞 ( 即下一条指令依赖于前一条指令的结果 ) 、分支和跳转、异常(异常和中断)。由于 ARM 是硬件 flush 流水设计的,当发生冒险时,会暂停取指,然后清流水, (MIPS 解决冒险通常依赖于编译器,比如插入一条 NOP 指令及重新排列指令序列 ) 。

你可能感兴趣的:(计算机组成原理)