Structured Streaming最主要的生产环境应用场景就是配合kafka做实时处理,不过在Strucured Streaming中kafka的版本要求相对搞一些,只支持0.10及以上的版本。就在前一个月,我们才从0.9升级到0.10,终于可以尝试structured streaming的很多用法,很开心~
引入
如果是maven工程,直接添加对应的kafka的jar包即可:
org.apache.spark
spark-sql-kafka-0-10_2.11
2.2.0
读取kafka的数据
以流的形式查询
读取的时候,可以读取某个topic,也可以读取多个topic,还可以指定topic的通配符形式:
读取一个topic
val df = spark
.readStream
.format("kafka")
.option("kafka.bootstrap.servers", "host1:port1,host2:port2")
.option("subscribe", "topic1")
.load()
df.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")
.as[(String, String)]
读取多个topic
val df = spark
.readStream
.format("kafka")
.option("kafka.bootstrap.servers", "host1:port1,host2:port2")
.option("subscribe", "topic1,topic2")
.load()
df.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")
.as[(String, String)]
读取通配符形式的topic组
val df = spark
.readStream
.format("kafka")
.option("kafka.bootstrap.servers", "host1:port1,host2:port2")
.option("subscribePattern", "topic.*")
.load()
df.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")
.as[(String, String)]
以批的形式查询
关于Kafka的offset,structured streaming默认提供了几种方式:
设置每个分区的起始和结束值
val df = spark
.read
.format("kafka")
.option("kafka.bootstrap.servers", "host1:port1,host2:port2")
.option("subscribe", "topic1,topic2")
.option("startingOffsets", """{"topic1":{"0":23,"1":-2},"topic2":{"0":-2}}""")
.option("endingOffsets", """{"topic1":{"0":50,"1":-1},"topic2":{"0":-1}}""")
.load()
df.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")
.as[(String, String)]
配置起始和结束的offset值(默认)
val df = spark
.read
.format("kafka")
.option("kafka.bootstrap.servers", "host1:port1,host2:port2")
.option("subscribePattern", "topic.*")
.option("startingOffsets", "earliest")
.option("endingOffsets", "latest")
.load()
df.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")
.as[(String, String)]
Schema信息
读取后的数据的Schema是固定的,包含的列如下:
Column | Type | 说明 |
---|---|---|
key | binary | 信息的key |
value | binary | 信息的value(我们自己的数据) |
topic | string | 主题 |
partition | int | 分区 |
offset | long | 偏移值 |
timestamp | long | 时间戳 |
timestampType | int | 类型 |
source相关的配置
无论是流的形式,还是批的形式,都需要一些必要的参数:
- kafka.bootstrap.servers kafka的服务器配置,host:post形式,用逗号进行分割,如host1:9000,host2:9000
- assign,以json的形式指定topic信息
- subscribe,通过逗号分隔,指定topic信息
- subscribePattern,通过java的正则指定多个topic
assign、subscribe、subscribePattern同时之中能使用一个。
其他比较重要的参数有:
- startingOffsets, offset开始的值,如果是earliest,则从最早的数据开始读;如果是latest,则从最新的数据开始读。默认流是latest,批是earliest
- endingOffsets,最大的offset,只在批处理的时候设置,如果是latest则为最新的数据
- failOnDataLoss,在流处理时,当数据丢失时(比如topic被删除了,offset在指定的范围之外),查询是否报错,默认为true。这个功能可以当做是一种告警机制,如果对丢失数据不感兴趣,可以设置为false。在批处理时,这个值总是为true。
- kafkaConsumer.pollTimeoutMs,excutor连接kafka的超时时间,默认是512ms
- fetchOffset.numRetries,获取kafka的offset信息时,尝试的次数;默认是3次
- fetchOffset.retryIntervalMs,尝试重新读取kafka offset信息时等待的时间,默认是10ms
- maxOffsetsPerTrigger,trigger暂时不会用,不太明白什么意思。Rate limit on maximum number of offsets processed per trigger interval. The specified total number of offsets will be proportionally split across topicPartitions of different volume.
写入数据到Kafka
Apache kafka仅支持“至少一次”的语义,因此,无论是流处理还是批处理,数据都有可能重复。比如,当出现失败的时候,structured streaming会尝试重试,但是不会确定broker那端是否已经处理以及持久化该数据。但是如果query成功,那么可以断定的是,数据至少写入了一次。比较常见的做法是,在后续处理kafka数据时,再进行额外的去重,关于这点,其实structured streaming有专门的解决方案。
保存数据时的schema:
- key,可选。如果没有填,那么key会当做null,kafka针对null会有专门的处理(待查)。
- value,必须有
- topic,可选。(如果配置option里面有topic会覆盖这个字段)
下面是sink输出必须要有的参数:
- kafka.bootstrap.servers,kafka的集群地址,host:port格式用逗号分隔。
流处理的数据写入
// 基于配置指定topic
val ds = df
.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")
.writeStream
.format("kafka")
.option("kafka.bootstrap.servers", "host1:port1,host2:port2")
.option("topic", "topic1")
.start()
// 在字段中包含topic
val ds = df
.selectExpr("topic", "CAST(key AS STRING)", "CAST(value AS STRING)")
.writeStream
.format("kafka")
.option("kafka.bootstrap.servers", "host1:port1,host2:port2")
.start()
批处理的数据写入
跟流处理其实一样
df.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")
.write
.format("kafka")
.option("kafka.bootstrap.servers", "host1:port1,host2:port2")
.option("topic", "topic1")
.save()
df.selectExpr("topic", "CAST(key AS STRING)", "CAST(value AS STRING)")
.write
.format("kafka")
.option("kafka.bootstrap.servers", "host1:port1,host2:port2")
.save()
kafka的特殊配置
针对Kafka的特殊处理,可以通过DataStreamReader.option进行设置。
关于(详细的kafka配置可以参考consumer的官方文档](http://kafka.apache.org/documentation.html#newconsumerconfigs)
以及kafka producer的配置
注意下面的参数是不能被设置的,否则kafka会抛出异常:
- group.id kafka的source会在每次query的时候自定创建唯一的group id
- auto.offset.reset 为了避免每次手动设置startingoffsets的值,structured streaming在内部消费时会自动管理offset。这样就能保证订阅动态的topic时不会丢失数据。startingOffsets在流处理时,只会作用于第一次启动时,之后的处理都会自定的读取保存的offset。
- key.deserializer,value.deserializer,key.serializer,value.serializer 序列化与反序列化,都是ByteArraySerializer
- enable.auto.commit kafka的source不会提交任何的offset
- interceptor.classes 由于kafka source读取数据都是二进制的数组,因此不能使用任何拦截器进行处理。
参考
- 官方文档