old driver tree[珂朵莉树]模板

珂朵莉树是我校一位巨佬教我的,原理很简单,在set上维护一个三元组表示的区间信息,感觉和分块类似。在区间覆盖,区间第k小(大)的值等区间信息很方便。
前提条件是数据要随机!!
想要学习点这里

#pragma GCC optimize(2)
#include
using namespace std;
#define lowbit(x) ((x)&(-x))
typedef long long ll;
const int maxn = 1e5+5;
int Case = 1;
ll power(ll a, ll b, ll mod) {
	ll res = 1, base = a%mod;
	while(b) {
		if(b&1) res = res*base%mod;
		base = base*base%mod;
		b = b>>1;
	}
	return res;
}
struct node{
	int l, r;
	mutable ll v;
	node(int l, int r = -1, ll v = 0):l(l), r(r), v(v){}
	bool operator<(const node x)const{
		return l < x.l;
	}
};
class ODT{
private:
set<node>s;
vector<pair<ll, ll> >ve;
public:
	set<node>::iterator split(int pos) {
		auto it = s.lower_bound(node(pos));
		if(it != s.end() && it->l == pos) return it;
		it--;
		if(pos > it->r) return s.end();
		int l = it->l, r = it->r;
		ll v = it->v;
		s.erase(it);
		s.insert(node(l, pos-1, v));
		return s.insert(node(pos, r, v)).first;
	}
	void add(int l, int r, ll val = 0) {
		split(l);
		auto itr = split(r+1), itl = split(l);
		for(;itl!=itr; ++itl) itl->v+=val;
	}
	void assign(int l, int r, ll val = 0) {
		split(l);
		auto itr = split(r+1), itl = split(l);
		s.erase(itl, itr);
		s.insert(node{l, r, val});
	}
	ll rank(int l, int r, int k, bool reversed = 0) {
		if(reversed)k = r-l+2-k;
		split(l);
		auto itr = split(r+1), itl = split(l);
		ve.clear();
		for(;itl!=itr; ++itl)
			ve.push_back(make_pair(itl->v, itl->r-itl->l+1));
		sort(ve.begin(),ve.end());
		for(auto i : ve) {
			k -= i.second;
			if(k<=0)return i.first;
		}
		return -1;
	}
	ll sum(int l, int r, ll ex, ll mod) {
		split(l);
		auto itr = split(r+1), itl = split(l);
		ll res = 0;
		for(;itl!=itr;++itl) {
			res = (res+1ll*(itl->r-itl->l+1)*power(itl->v, ex, mod)%mod)%mod;
		}
		return res;
	}
	void _insert(node x) {
		s.insert(x);
	}
}odt;
int n, m;
ll seed, vmax, cc[maxn];
ll rnd() {
	ll ret = seed;	
	seed = (seed*7+13)%1000000007;
	return ret;
}
void solve() {
    scanf("%d%d%lld%lld", &n, &m, &seed, &vmax);
    for(int i = 1; i <= n; i++) {
    	cc[i] = (rnd()%vmax)+1;
    	//printf("----");
    	odt._insert(node{i, i, cc[i]});
    }
    odt._insert(node{n+1, n+1, 0});
    for(int i = 1 ;i <= m; i++) {
    	int op = (rnd()%4)+1;
    	int l = (rnd()%n)+1, r = (rnd()%n)+1;
    	ll x, y;
    	if(l>r) swap(l, r);
    	if(op == 3) x = (rnd()%(r-l+1))+1;
    	else x = (rnd()%vmax)+1;
    	if(op == 4) y = (rnd()%vmax)+1;
    	if(op == 1) odt.add(l, r, x);
    	else if(op == 2) odt.assign(l, r, x);
    	else if(op == 3) printf("%lld\n", odt.rank(l, r, x, 0)); 
    	else printf("%lld\n", odt.sum(l, r, x, y));
    }
    return;
}
int main() {
    //ios::sync_with_stdio(false);
#ifndef ONLINE_JUDGE
    //freopen("/Users/hannibal_lecter/Desktop/code/in.txt", "r", stdin);
    //freopen("/Users/hannibal_lecter/Desktop/code/out.txt","w",stdout);
#endif
    while(Case--) {
        solve();
    }
    return 0;
}



你可能感兴趣的:(ODT)