题目:
洛谷3638
分析:
卡了一天的神题……(OrzJumpmelon)
首先预处理出从点\(p\)向\(d\)方向出发最终能到达的点\(nxt[p][d]\)。这个可以直接记忆化搜索解决。如果出现环说明不能向这个方向出发,设为\(-1\)。
struct point
{
int x, y;
point(const int _x = 0, const int _y = 0)
: x(_x), y(_y) {}
};
inline bool check(const point &p)
{
return p.x >= 0 && p.x < h && p.y >= 0 && p.y < w;
}
inline int ptoi(const point &p)
{
return p.x * w + p.y;
}
bool vis[P][DIR], insta[P][DIR];
int dfs(const point &u, const int &d)
{
int id = ptoi(u);
if (vis[id][d])
return nxt[id][d];
if (insta[id][d])
{
vis[id][d] = true;
return nxt[id][d] = -1;
}
int dd = d;
if (map[id] == LEFT)
dd = (dd + 1) & 3;
if (map[id] == RIGHT)
dd = (dd + 3) & 3;
point v = point(u.x + dx[dd], u.y + dy[dd]);
if (!check(v) || map[ptoi(v)] == WALL)
{
vis[id][d] = true;
return nxt[id][d] = id;
}
else
{
insta[id][d] = true;
nxt[id][d] = dfs(v, dd);
insta[id][d] = false;
vis[id][d] = true;
return nxt[id][d];
}
}
然后考虑用\(dp[i][j][u]\)表示令编号为\([i,j]\)的复合机器人在\(u\)点的最少步数,最终答案就是\(min(dp[0][n-1][u])\)。有两种转移方式:
1.把\([i,k]\)和\((k,j]\)两个机器人在\(p\)点拼起来,即:
\[dp[i][j][u]=min(dp[i][k][u]+dp[k+1][j][u])\]
2.把\([i,j]\)机器人推到\(u\)点,即(其中\(v\)能一步走到\(u\)即存在满足\(nxt[v][d]=u\)的\(d\)):
\[dp[i][j][u]=dp[i][j][v]+1\]
第一种直接区间DP即可。第二种存在循环更新,但是长得很像最短路……
于是我码了Dijkstra,卡常卡到死也没卡过去,还借此机会跟Jumpmelon谝了一天qwq。
下面介绍一下Jumpmelon给我讲的优化:开两个队列,第一个队列是一开始的点,按照\(dis\)排好序(\(dis[u]\)表示\(dp[i][j][u]\),下同);第二个队列是已经更新,等待用来更新别的点的队列,初始为空。每次将两个队列队首中\(dis\)较小的一个取出来(相当于Dijkstra的堆顶)来松弛其他点,这样复杂度是\(O(n+m)\)的,成功去掉堆的\(\log m\)。为什么这样是对的呢?
注意到所有边权都是\(1\),于是点\(v\)被更新时第二个队列的队尾(如果存在)的\(dis\)一定不会大于\(dis[v]\),所以直接把\(v\)插到队尾不会影响第二个队列的有序性。原因如下。
考虑反证。假设之前第二个队列是有序的,在某一次更新后变得无序了。设用于更新的点是\(u\),被更新的点是\(v\),更新前第二个队列的队尾为\(t\),满足\(dis[v]=dis[u]+1\),\(dis[t]>dis[v]\)。由于边权都是\(1\),那么曾用于更新\(t\)的点\(p\)满足\(dis[p]=dis[t]-1\geq dis[v]>dis[u]\)。既然\(dis[u]
代码:
#include
#include
#include
#include
#include
#include
#include
#undef i
#undef j
#undef k
#undef true
#undef false
#undef min
#undef max
#undef sort
#undef swap
#undef if
#undef while
#undef for
#undef printf
#undef scanf
#undef putchar
#undef getchar
#define _ 0
using namespace std;
namespace zyt
{
template
inline bool read(T &x)
{
char c;
bool f = false;
x = 0;
do
c = getchar();
while (c != EOF && c != '-' && !isdigit(c));
if (c == EOF)
return false;
if (c == '-')
f = true, c = getchar();
do
x = x * 10 + c - '0', c = getchar();
while (isdigit(c));
if (f)
x = -x;
return true;
}
inline bool read(char &c)
{
do
c = getchar();
while (c != EOF && !isgraph(c));
return c != EOF;
}
template
inline void write(T x)
{
static char buf[20];
char *pos = buf;
if (x < 0)
putchar('-'), x = -x;
do
*pos++ = x % 10 + '0';
while (x /= 10);
while (pos > buf)
putchar(*--pos);
}
const int W = 5e2, P = W * W, N = 9, DIR = 4, INF = 0x3f3f3f3f, B = 18;
const int U = 0, L = 1, D = 2, R = 3, WALL = N, LEFT = N + 1, RIGHT = N + 2, BLANK = N + 3;
const int dx[DIR] = {-1, 0, 1, 0};
const int dy[DIR] = {0, -1, 0, 1};
int n, w, h, p, nxt[P][DIR], map[P], dp[N][N][P];
struct point
{
int x, y;
point(const int _x = 0, const int _y = 0)
: x(_x), y(_y) {}
};
inline bool check(const point &p)
{
return p.x >= 0 && p.x < h && p.y >= 0 && p.y < w;
}
inline int ptoi(const point &p)
{
return p.x * w + p.y;
}
bool vis[P][DIR], insta[P][DIR];
int dfs(const point &u, const int &d)
{
int id = ptoi(u);
if (vis[id][d])
return nxt[id][d];
if (insta[id][d])
{
vis[id][d] = true;
return nxt[id][d] = -1;
}
int dd = d;
if (map[id] == LEFT)
dd = (dd + 1) & 3;
if (map[id] == RIGHT)
dd = (dd + 3) & 3;
point v = point(u.x + dx[dd], u.y + dy[dd]);
if (!check(v) || map[ptoi(v)] == WALL)
{
vis[id][d] = true;
return nxt[id][d] = id;
}
else
{
insta[id][d] = true;
nxt[id][d] = dfs(v, dd);
insta[id][d] = false;
vis[id][d] = true;
return nxt[id][d];
}
}
void Shortest_Path(const int l, const int r)
{
typedef pair pii;
static pii tmp[P];
static bool vis[P];
static queue q1, q2;
while (!q1.empty())
q1.pop();
while (!q2.empty())
q2.pop();
memset(vis, 0, sizeof(bool[p]));
int *dis = dp[l][r], cnt = 0;
for (int i = 0; i < p; i++)
if (map[i] != WALL && dis[i] < INF)
tmp[cnt++] = make_pair(dis[i], i), vis[i] = true;
sort(tmp, tmp + cnt);
for (int i = 0; i < cnt; i++)
q1.push(tmp[i].second);
while (!q1.empty() || !q2.empty())
{
int u = ((q1.empty() || (!q2.empty() && dis[q1.front()] > dis[q2.front()])) ? q2.front() : q1.front());
if (!q1.empty() && u == q1.front())
q1.pop();
else
q2.pop();
vis[u] = false;
for (int i = 0; i < DIR; i++)
{
int v = nxt[u][i];
if (~v && dis[v] > dis[u] + 1)
{
dis[v] = dis[u] + 1;
if (!vis[v])
q2.push(v), vis[v] = true;
}
}
}
}
int work()
{
read(n), read(w), read(h);
p = w * h;
for (int i = 0; i < n; i++)
for (int j = i; j < n; j++)
memset(dp[i][j], INF, sizeof(int[p]));
for (int i = 0; i < p; i++)
{
char c;
read(c);
if (isdigit(c))
{
map[i] = c - '1';
dp[map[i]][map[i]][i] = 0;
}
else if (c == '.')
map[i] = BLANK;
else if (c == 'x')
map[i] = WALL;
else if (c == 'A')
map[i] = LEFT;
else
map[i] = RIGHT;
}
for (int i = 0; i < h; i++)
for (int j = 0; j < w; j++)
{
int id = ptoi(point(i, j));
if (map[id] != WALL)
for (int d = 0; d < DIR; d++)
nxt[id][d] = dfs(point(i, j), d);
}
for (int l = 1; l <= n; l++)
for (int i = 0; i + l - 1 < n; i++)
{
int j = i + l - 1;
for (int u = 0; u < p; u++)
if (map[u] != WALL)
for (int k = i; k < j; k++)
dp[i][j][u] = min(dp[i][j][u], dp[i][k][u] + dp[k + 1][j][u]);
Shortest_Path(i, j);
}
int ans = INF;
for (int i = 0; i < p; i++)
ans = min(ans, dp[0][n - 1][i]);
if (ans == INF)
write(-1);
else
write(ans);
return (0^_^0);
}
}
int main()
{
return zyt::work();
}