实验结论无论用svm,k-nn,logistic效果都不是很理想,实验的过程就省略了。下面我们看用浅层神经网络训练线性不可分数据效果.
import numpy as np
import matplotlib.pyplot as plt
import sklearn
import sklearn.datasets
import sklearn.linear_model
%matplotlib inline
def sigmoid(x):
"""
计算x的sigmoid
参数:
x 是一个值 或者一个数列
返回:
s -- simoid(x)
"""
s = 1.0/(1+1/np.exp(x))
return s
#我们创造一个线性不可分的数据 等下用神经网络去预测
def load_planar_dataset():
np.random.seed(1)
m = 400 # 样本数量
N = int(m/2) # 每个类别的样本量
D = 2 # 维度数
X = np.zeros((m,D)) # 初始化X
Y = np.zeros((m,1), dtype='uint8') # 初始化Y
a = 4 # 花儿的最大长度
for j in range(2):
ix = range(N*j,N*(j+1))
t = np.linspace(j*3.12,(j+1)*3.12,N) + np.random.randn(N)*0.2 # theta
r = a*np.sin(4*t) + np.random.randn(N)*0.2 # radius
X[ix] = np.c_[r*np.sin(t), r*np.cos(t)]
Y[ix] = j
X = X.T
Y = Y.T
return X, Y
X, Y = load_planar_dataset()
X的维度是(2,400), Y的维度是(1,400)
我们以x作为两个坐标轴的数据确定1个点,以Y的数据作为点的颜色分类绘制如下图:
plt.scatter(X[0, :], X[1, :], c=Y[0], s=40, cmap=plt.cm.Spectral)
可以清楚的看到数据是线性不可分的(很难有直线去分开不同类).
#定义一些参数
def layer_sizes(X,Y):
#输入层单元个数
n_x = X.shape[0]
#神经元个数
n_h = 4
#输出层单元个数
n_y = Y.shape[0]
return (n_x, n_h, n_y)
def initialize_parameters(n_x, n_h, n_y):
#随机化种子
np.random.seed(2)
#随机初始化参数
W1 = np.random.randn(n_h, n_x)
b1 = np.zeros((n_h, 1))
W2 = np.random.randn(n_y, n_h)
b2 = np.zeros((n_y, 1))
assert (W1.shape == (n_h, n_x))
assert (b1.shape == (n_h, 1))
assert (W2.shape == (n_y, n_h))
assert (b2.shape == (n_y, 1))
parameters = {"W1": W1,
"b1": b1,
"W2": W2,
"b2": b2}
return parameters
#开始前向传播
def forward_propagation(X, parameters):
W1 = parameters["W1"]
b1 = parameters["b1"]
W2 = parameters["W2"]
b2 = parameters["b2"]
Z1 = np.dot(W1, X) + b1
#tanh激励函数多用于处理线性不可分问题
A1 = np.tanh(Z1)
Z2 = np.dot(W2, A1) + b2
A2 = sigmoid(Z2)
assert(A2.shape == (1, X.shape[1]))
cache = {"Z1": Z1,
"A1": A1,
"Z2": Z2,
"A2": A2}
return A2, cache
#开始计算误差(成本函数)
def compute_cost(A2, Y, parameters):
m = Y.shape[1]
#multiply 用于矩阵对应位置相乘,这个时候就不用在意乘法交换律了
logprobs = np.multiply(np.log(A2), Y) + np.multiply(np.log(1-A2), (1-Y))
cost = -(1.0/m)*np.sum(logprobs)
cost = np.squeeze(cost)
assert(isinstance(cost, float))
return cost
#反向传播
def backward_propagation(parameters, cache, X, Y):
m = X.shape[1]
W1 = parameters["W1"]
W2 = parameters["W2"]
A1 = cache["A1"]
A2 = cache["A2"]
dZ2 = A2 - Y
dW2 = 1.0/m*np.dot(dZ2, A1.T)
db2 = 1.0/m*np.sum(dZ2, axis=1, keepdims=True)
dZ1 = np.dot(W2.T, dZ2)*(1-np.power(A1, 2))
dW1 = 1.0/m*np.dot(dZ1, X.T)
db1 = 1.0/m*np.sum(dZ1, axis=1, keepdims=True)
grads = {"dW1": dW1,
"db1": db1,
"dW2": dW2,
"db2": db2}
return grads
#梯度下降,更新参数
def update_parameters(parameters, grads, learning_rate = 1.2):
W1 = parameters["W1"]
b1 = parameters["b1"]
W2 = parameters["W2"]
b2 = parameters["b2"]
dW1 = grads["dW1"]
db1 = grads["db1"]
dW2 = grads["dW2"]
db2 = grads["db2"]
W1 = W1 - learning_rate*dW1
b1 = b1 - learning_rate*db1
W2 = W2 - learning_rate*dW2
b2 = b2 - learning_rate*db2
parameters = {"W1": W1,
"b1": b1,
"W2": W2,
"b2": b2}
return parameters
def nn_model(X, Y, n_h, num_iterations = 10000, print_cost=False):
np.random.seed(3)
n_x = layer_sizes(X, Y)[0]
n_y = layer_sizes(X, Y)[2]
parameters = initialize_parameters(n_x, n_h, n_y)
W1 = parameters["W1"]
b1 = parameters["b1"]
W2 = parameters["W2"]
b2 = parameters["b2"]
for i in range(0, num_iterations):
A2, cache = forward_propagation(X, parameters)
cost = compute_cost(A2, Y, parameters)
grads = backward_propagation(parameters, cache, X, Y)
parameters = update_parameters(parameters, grads, learning_rate = 1.2)
if print_cost and i % 1000 == 0:
print ("Cost after iteration %i: %f" %(i, cost))
return parameters
def predict(parameters, X):
A2, cache = forward_propagation(X, parameters)
predictions = (A2 > 0.5)
return predictions
parameters = nn_model(X, Y, n_h = 4, num_iterations = 10000, print_cost=True)
x_min, x_max = X[0, :].min() - 1, X[0, :].max() + 1
y_min, y_max = X[1, :].min() - 1, X[1, :].max() + 1
h = 0.01
#定义网格
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
#预测
Z = predict(parameters,np.c_[xx.ravel(), yy.ravel()].T)
Z = Z.reshape(xx.shape)
#置信区间
plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)
plt.scatter(X[0, :], X[1, :], c= Y[0], s=40, cmap=plt.cm.Spectral)
plt.title("Decision Boundary for hidden layer size " + str(4))