- ORBSLAM3 运行流程 以rgbd_tum.cc函数为例进行分析
水理璇浮
ORBSLAM3数码相机
一、运行使用的是D435i相机自己录制的数据。运行命令:./Examples/RGB-D/rgbd_tum'/opt/vslam/ORB_SLAM3_detailed_comments-dense_map_new/Vocabulary/ORBvoc.txt''/opt/vslam/ORB_SLAM3_detailed_comments-dense_map_new/Examples/RGB-D/TU
- OpenVSLAM在Ubuntu16.04下编译安装
hhh0209
vslamlinux
最近开始学习VSLAM,理论知识大概了解了一下,想要学透还是需要下一番功夫的。为了领导的任务,先把OpenVSLAM装上,跑个demo看看。我平时用windows比较多,改成Linux还是得适应一下。参考资料主要有:1参考12参考23官方安装文档按着这些教程,基本能安装下来,中间也会有些小问题,记录如下:1,参考1里的依赖安装第10条我没有安装成功;2,我的OPENCV是3.4.0版本;3,安装y
- VSLAM中的特征点三角化
nice-wyh
算法
特征点三角化(Triangulation)是VSLAM中一个非常基础的问题,它是根据特征点在多个相机下的投影恢复出特征点的3D坐标。特征点在某个相机中被观测到,根据相机位姿和观测向量可以得到3D空间中的一条从相机中心出发的观测“射线”,多个相机位姿观测会产生多条观测射线,理想情况下这些观测射线相交于空间中一点,求所有观测射线的交点就是特征点在3D空间的位置,这就是三角化最朴素的思想。实际中由于噪声
- 导航与定位技术已成为移动机器人的核心技术之一
Fuweizn
移动机器人自动化生产线AGV智能搬运机器人自动化机器人工业自动化
随着移动机器人技术的不断发展和应用领域的扩大,导航与定位技术已成为移动机器人的核心技术之一。本文将介绍移动机器人导航与定位技术的发展现状、技术前沿和面临的挑战。一、导航与定位技术的发展现状移动机器人的导航与定位技术是实现自主移动的关键。目前,移动机器人的导航与定位技术主要包括基于GPS、SLAM、VSLAM等技术的方法。1、GPS导航技术:利用全球定位系统进行定位,精度高、覆盖范围广,但需要外部信
- vslam论文24:ESVIO: 基于事件相机的双目VIO(RAL 2023)
xsyaoxuexi
视觉SLAM论文阅读c++人工智能学习笔记
摘要异步输出低延迟事件流的事件相机为具有挑战性的情况下的状态估计提供了很大的机会。尽管近年来基于事件的视觉里程测量技术得到了广泛的研究,但大多数都是基于单目的,而对立体事件视觉的研究很少。在本文中,我们介绍了ESVIO,这是第一个基于事件的立体视觉惯性里程计,它利用了事件流、标准图像和惯性测量的互补优势。我们建议的pipeline包括ESIO(纯基于事件的)和ESVIO(带有图像辅助的事件),它们
- vslam论文25: 结构约束的RGB-D SLAM(ICRA 2021)
xsyaoxuexi
视觉SLAM论文阅读c++平面学习计算机视觉笔记
摘要本文提出了一种专门为结构化环境设计的RGB-DSLAM系统,旨在通过从周围提取的几何特征来提高跟踪和制图精度。除了点之外,结构化环境还提供了大量的几何特征,如线和平面,我们利用这些特征来设计SLAM系统的跟踪和映射组件。对于跟踪部分,我们基于曼哈顿世界(MW)的假设探索这些特征之间的几何关系。我们提出了一种基于点、线和面的解耦优化方法,以及在附加的姿态优化模块中使用曼哈顿关系。在建图部分,以较
- vslam论文10:PL-VINS:具有点和线特征的实时单目视觉惯性SLAM
xsyaoxuexi
视觉SLAM论文阅读笔记c++
摘要PL-VINS是基于最先进的基于点的VINS-mono,开发的一种基于点和线特征的实时、高效优化的单目VINS方法。我们观察到,目前的作品使用LSD算法提取线条特征;然而,LSD是为场景形状表示而设计的,而不是为姿态估计问题设计的,由于其高昂的计算成本,这成为了实时性能的瓶颈。在本文中,我们通过研究隐藏参数调整和长度抑制策略来改进LSD算法。改进后的LSD算法的运行速度至少是LSD的三倍。此外
- vslam论文15:DynaVINS: 一种动态环境下的视觉惯性SLAM(ICRA 2023)
xsyaoxuexi
视觉SLAM论文阅读笔记c++学习
摘要视觉惯性里程计和SLAM算法广泛应用于服务机器人、无人机和自动驾驶汽车等领域。大多数SLAM算法都是基于假设地标是静态的。然而,在现实世界中,存在着各种各样的动态物体,它们降低了姿态估计的精度。此外,临时静态对象(在观察期间是静态的,但在视线之外时移动)会触发误报循环关闭。为了克服这些问题,我们提出了一种新的视觉惯性SLAM框架,称为DynaVINS,它对动态目标和临时静态目标都具有鲁棒性。在
- vslam论文23:VIP-SLAM: 一种高效、紧耦合的RGB-D视觉惯性平面SLAM(ICRA 2022)
xsyaoxuexi
视觉SLAM论文阅读平面人工智能算法笔记c++学习
摘要本文提出了一种融合RGB、Depth、IMU和结构化平面信息的紧密耦合SLAM系统。传统的基于稀疏点的SLAM系统总是保持大量的地图点来建模环境。大量的地图点给我们带来了很高的计算复杂度,使其难以部署在移动设备上。另一方面,平面是人造环境尤其是室内环境中常见的结构形式。我们通常可以使用少量的平面来表示一个大的场景。因此,本文的主要目的是降低基于稀疏点的SLAM的高复杂性。我们构建了一个轻量级的
- vslam论文8:EPLF-VINS: Real-Time Monocular Visual-InertialSLAM With Efficient Point-Line Flow Features
xsyaoxuexi
视觉SLAM论文阅读人工智能学习自动驾驶c++
(RAL2023)摘要本文介绍了一种利用点和线特征的高效视觉惯性同步定位和映射(SLAM)方法。目前,基于点的SLAM方法在弱纹理和运动模糊等场景下表现不佳。许多研究者注意到线特征在空间中的优异特性,并尝试开发基于线的SLAM系统。然而,线条提取和描述匹配过程的计算量巨大,难以保证整个SLAM系统的实时性,而错误的线条检测和匹配限制了SLAM系统性能的提高。本文通过短线融合、线特征均匀分布、自适应
- vulkan shader变换--Apple的学习笔记
applecai
关于图形变换,之前就做过专题学习过了。再快速复习下正交矩阵及矩阵变换的python实现--Apple的学习笔记其实主要的变换包括缩放,平移,旋转,衍射。另外二维图形主要都是按坐标旋转,三维图形都是按轴旋转的。关键点需要知道坐标系。然后代码工程显示的照片是相机视角的,所以还需要了解世界坐标/物体坐标/相机坐标/图像坐标的概念及转换。之前学习vslam的时候都学习过了。所以有了这些基础,我就直奔主题将
- 手撕 视觉slam14讲 ch13 代码 总结
全日制一起混
手撕VO篇视觉slam十四讲SLAMc++计算机视觉ubuntu
运行效果(Kitti00)4倍速一、代码GitHub-tzy0228/Easy-VO-SLAM:VSLAM-CH13工程代码注释版本二、编译过程踩坑视觉SLAM十四讲第二版ch13编译及运行问题_全日制一起混的博客-CSDN博客三、代码解读手撕视觉slam14讲ch13代码(1)工程框架与代码结构-CSDN博客手撕视觉slam14讲ch13代码(2)基本类的抽象_全日制一起混的博客-CSDN博客手
- 【VSLAM】ORB-SLAM3安装部署与运行
DevFrank
c++CV计算机视觉与音视频机器人rosslam
心口如一,犹不失为光明磊落丈夫之行也。——梁启超文章目录:smirk:1.ORB-SLAM3介绍:blush:2.代码安装部署1.安装ros与opencv2.安装Pangolin作为可视化和用户界面3.安装Eigen3一个开源线性库,可进行矩阵运算4.安装ORB-SLAM3:satisfied:3.案例运行1.运行数据集2.用真实相机usb_cam运行1.ORB-SLAM3介绍ORB-SLAM3是
- VSLAM(7):后端优化---滤波器方法和BA图优化
聪明的笨小子
视觉SLAM14讲python算法
在视觉里程计完成每次的位姿估计后,可以实时地得到一个短时间内的轨迹和地图点,但是由于估计本身具有误差,这个误差会一直保持并不断累加。所以可以构建一个尺度和规模更大的优化问题,来计算一段长时间内的最有轨迹和地图。一,后端优化综述SLAM问题可以由运动方程和观测方程描述,设从t=0到t=N这个时间段内,机器人经过了到的位姿点,观测到了这么多的特征点,那么有:视觉前段往往在某一时刻会观测很多的特征点,所
- vslam论文14:Monocular Visual-Inertial Odometry with Planar Regularities(ICRA 2023)
xsyaoxuexi
视觉SLAM论文阅读c++学习笔记
摘要最先进的单目视觉惯性里程计(VIO)方法依赖于稀疏点特征,部分原因是它们的效率、鲁棒性和普遍性,而忽略了高级结构规律,如平面,这些在人造环境中很常见,可以用来进一步约束运动。一般来说,由于平面的存在空间很大,可以用相机观察平面很长一段时间,因此可以进行长期导航。所以,在本文中,我们设计了一种新颖的实时单目VIO系统,该系统在轻量级多状态约束卡尔曼滤波器(MSCKF)中由平面特征完全正则化。我们
- vslam论文21:基于点、面图的高效视觉惯性导航(ICRA 2023)
xsyaoxuexi
视觉SLAM论文阅读笔记学习c++平面
摘要相对于全局先验地图,精确和实时的全局姿态估计在许多应用中是必不可少的,例如微型飞行器和增强现实的物流。假设纯稀疏的三维点图可以提供环境的无结构表示,那么生成点平面先验图可以进一步建模环境拓扑并为精确定位提供全局约束。为了实现这一点,我们提出了一个基于滤波器的大规模视觉惯性里程计系统,称为PPM-VIO,它利用点平面图来纠正累积漂移。该系统利用语义信息检测稀疏点云的共面信息,通过几何约束、语义约
- vslam论文1:Range-Focused Fusion of Camera-IMU-UWB for Accurate and Drift-Reduced Localization(RAL2021)
xsyaoxuexi
视觉SLAM论文阅读数码相机
准确、低飘移定位的相机-IMU-UWB聚焦距离融合摘要:在这项工作中,我们提出了一种紧耦合的单目摄像机、6自由度IMU和单个未知UWB锚融合方案,以实现精确和减少漂移的定位。具体地说,该文章聚焦于将UWB传感器整合到现有的最先进的视觉惯性系统。为实现这一目标,之前的工作使用单个最近的UWB距离数据来更新滑动窗口中的机器人位置(“聚焦位置”),并展示了令人鼓舞的结果。然而,这些方法忽略了:1)UWB
- vslam论文4:Dynam-SLAM: An Accurate, Robust Stereo Visual-Inertial SLAM Method in Dynamic Environments
xsyaoxuexi
视觉SLAM论文阅读论文阅读人工智能自动驾驶c++目标检测
出版:TRO2022摘要大多数现有的基于视觉的SLAM系统及其变体仍然假设观测是绝对静态的,无法在动态环境中表现良好。在这里,我们介绍了Dynam-SLAM(Dynam),这是一种双目视觉惯性SLAM系统,能够在高动态环境中实现稳健、准确和连续的工作。我们的方法致力于将双目场景流与惯性测量单元(IMU)松耦合,用于动态特征检测,并将动态特征和静态特征与IMU测量紧耦合以进行非线性优化。首先,对测量
- vslam论文2:FEJ-VIRO: A Consistent First-Estimate Jacobian Visual-Inertial-Ranging Odometry( IROS-2022)
xsyaoxuexi
视觉SLAM论文阅读人工智能目标跟踪自动驾驶c++
FEJ-VIRO:一种一致的第一估计雅可比视觉-惯性-测距里程计一、摘要最近几年,VIO已经实现了很多显著的进步。然而,VIO方法在长期轨迹中会遭受定位飘移。在这篇文章中,我们提出FEJ-VIRO通过一致地将UWB测量值整合到VIO框架去减少VIO的定位飘移。考虑到UWB锚的原始位置通常无法获取,我们提出一种长短窗结构去初始化UWB锚的位置,和状态增广的协方差。初始化后,FEJ-VIRO同时估计U
- 德鲁周记06--VSLAM从入门到入坟
安德鲁JANKENPAN
德鲁周记SLAMslam
VSLAM入门介绍基础知识三维空间的刚体运动欧式变换四元数欧拉角李群与李代数线性拟合相机单目相机双目相机深度相机基本框架视觉里程计特征匹配ORB直接法对比后端优化EKFBA(BundleAdjustment)回环检测建图因为研究生的工程实践我选择了这个方向,这两周一直在学VSLAM,看完了高翔老师的视频和《视觉SLAM十四讲》,强烈推荐!!!入门必看,神书!!当然我第一遍自我感觉是肯定没看太懂的,
- 【VSLAM系列】三:Vins-Mono论文笔记
塞拉摩
视觉SLAM论文阅读数码相机人工智能
VINs-Mono论文1.VINS-Mono的特点:1.未知初始状态的鲁棒性初始化过程2.带imu-camera外参校准和imu校准的紧耦合,基于非线性优化的单目VIO系统3.在线重定位和四个自由度的全局姿态图优化。4.姿态图可以保存,加载,并和局部姿态图进行合并。2.传感器数据处理摄像头和imu数据融合方法:1.松耦合法,imu是独立于摄像头的模块,常使用EKF算法,imu数据此时用于状态传播,
- vSLAM中IMU预积分的作用--以惯性导航的角度分析
清风微升至
视觉SLAM数码相机
作为一个学过一点惯导的工程师,在初次接触视觉slam方向时,最感兴趣的就是IMU预积分了。但为什么要用这个预积分,在看了很多材料和书后,还是感觉模模糊糊,云里雾里。在接触了vSLAM的更多内容后,站在历史研究者的角度去分析,得到了一个更为清晰的作用分析。首先,需要明确IMU与相机这两种传感器的互补作用,这是为什么要用IMU的原因。直接贴出程博书中的内容,总结的比较全面了。总之,就是相机成像的缺点可
- Semantic Visual Simultaneous Localization andMapping: A Survey 语义视觉同步定位与映射研究综述 粗翻
尤齐
深度学习机器学习人工智能python算法
2021摘要视觉同步定位与映射(vSLAM)在计算机视觉和机器人领域取得了巨大进展,并已成功应用于自主机器人导航和AR/VR等许多领域。然而,vSLAM无法在动态和复杂的环境中实现良好的本地化。近年来,许多出版物报道,通过将语义信息与vSLAM相结合,语义vSLAM系统具有解决上述问题的能力。然而,还没有关于语义vSLAM的全面调查。为了填补这一空白,本文首先回顾了语义vSLAM的发展,明确强调了
- SLAM总览【自学备忘】
Yup_Boss
矩阵
SLAM一、VSLAM1、库1.1Sophus库1.1.1Sophus库安装1.1.2Sophus库函数一、VSLAM1、库1.1Sophus库Eigen库是一个开源的C++线性代数库,它提供了快速的有关矩阵的线性代数运算,还包括解方程等功能。但是Eigen库提供了集合模块,但没有提供李代数的支持。一个较好的李群和李代数的库是Sophus库,它很好的支持了SO(3),so(3),SE(3)和se(
- OpenVSLAM源码阅读
释怀°Believe
#视觉SLAM人工智能
⚡⚡⚡通过src下面的CMakeLists.txt开始构建项目add_subdirectory(stella_vslam)上面这句代码向CMake告知在当前项目中引入一个子目录,并在子目录中查找另一个CmakeLists.txt文件来构建项目在stella_vslam子目录中的CMakeLists.txt文件将描述如何构建stella_vslam子项目,可能包括源文件、编译选项、链接库等。主项目的
- 博客学习目录
Howe_xixi
学习
填坑专区,督促自己有系统的学习归纳。先把想学的挖个坑,一边填坑一边挖坑。怕什么真理无穷,进一步有一步的欢喜。目录【基础学科学习】【线性代数笔记】《3Blue1Brown》笔记【SLAM】【VSLAM笔记】《视觉SLAM十四讲》学习笔记Smoothly-VSLAM学习笔记【嵌入式开发】【鸿蒙开发笔记】OpenHarmony北向学习笔记【Linux系统】【编程语言学习】【C++笔记】【Python笔记
- 【VSLAM系列】四:Vins-Mono源码学习笔记
塞拉摩
视觉SLAM学习笔记opencv
VINS-Mono源码工程化技巧:滑动窗口的优化方式–>控制计算量同时实现优于滤波方法的里程计高效的去畸变操作–>实时性优于opencv且精度不会下降的去畸变不同实时性要求的处理方法–>后端实时性要求高于回环优点:套件价格、功耗、尺寸优势明显快速鲁棒的单目IMU初始化过程紧耦合的后端优化,在优化VIO位姿的同时还兼顾外参标定,零偏估计以及传感器延时估计回环检测功能,便于构建全局一致性更好的位姿和地
- 【深蓝学院】手写VIO第7章--VINS初始化和VIO系统--笔记
读书健身敲代码
笔记
0.内容1.VIO回顾整个视觉前端pipeline回顾:两帧图像,可提取特征点,特征匹配(描述子暴力匹配或者光流)已知特征点匹配关系,利用几何约束计算relativepose([R|t]),translation只有方向,没有尺度使用三角化获得3维坐标,即可完成vslam系统的初始化有了3D特征点,后续可根据特征跟踪,使用PnP求解CameraPose,无需再使用几何约束IMU的加速度要和世界系的
- 【Smoothly-VSLAM】-3 描述状态不简单:三维空间刚体运动
Howe_xixi
机器人计算机视觉
所有内容请看:博客学习目录_Howe_xixi的博客-CSDN博客https://blog.csdn.net/weixin_44362628/article/details/126020573?spm=1001.2014.3001.5502参考链接:3.描述状态不简单:三维空间刚体运动(yuque.com)参考链接0.《视觉SLAM十四讲》1.旋转的左乘与右乘2.如何通俗地解释欧拉角?之后为何要引
- VSLAM视觉里程计总结
Yangy_Jiaojiao
计算机视觉人工智能opencv
相机模型是理解视觉里程计之前的基础。视觉里程计(VIO)主要分为特征法和直接法。如果说特征点法关注的是像素的位置差,那么,直接法关注的则是像素的颜色差。特征点法通常会把图像抽象成特征点的集合,然后去缩小特征点之间的重投影误差;而直接法则通过warpfunction直接计算像素点在另一张图像上的颜色差,这样就省去了特征提取的步骤。特征点:关键点(位姿)+描述子(向量)直接法:根据像素的亮度信息估计相
- 对股票分析时要注意哪些主要因素?
会飞的奇葩猪
股票 分析 云掌股吧
众所周知,对散户投资者来说,股票技术分析是应战股市的核心武器,想学好股票的技术分析一定要知道哪些是重点学习的,其实非常简单,我们只要记住三个要素:成交量、价格趋势、振荡指标。
一、成交量
大盘的成交量状态。成交量大说明市场的获利机会较多,成交量小说明市场的获利机会较少。当沪市的成交量超过150亿时是强市市场状态,运用技术找综合买点较准;
- 【Scala十八】视图界定与上下文界定
bit1129
scala
Context Bound,上下文界定,是Scala为隐式参数引入的一种语法糖,使得隐式转换的编码更加简洁。
隐式参数
首先引入一个泛型函数max,用于取a和b的最大值
def max[T](a: T, b: T) = {
if (a > b) a else b
}
因为T是未知类型,只有运行时才会代入真正的类型,因此调用a >
- C语言的分支——Object-C程序设计阅读有感
darkblue086
applec框架cocoa
自从1972年贝尔实验室Dennis Ritchie开发了C语言,C语言已经有了很多版本和实现,从Borland到microsoft还是GNU、Apple都提供了不同时代的多种选择,我们知道C语言是基于Thompson开发的B语言的,Object-C是以SmallTalk-80为基础的。和C++不同的是,Object C并不是C的超集,因为有很多特性与C是不同的。
Object-C程序设计这本书
- 去除浏览器对表单值的记忆
周凡杨
html记忆autocompleteform浏览
&n
- java的树形通讯录
g21121
java
最近用到企业通讯录,虽然以前也开发过,但是用的是jsf,拼成的树形,及其笨重和难维护。后来就想到直接生成json格式字符串,页面上也好展现。
// 首先取出每个部门的联系人
for (int i = 0; i < depList.size(); i++) {
List<Contacts> list = getContactList(depList.get(i
- Nginx安装部署
510888780
nginxlinux
Nginx ("engine x") 是一个高性能的 HTTP 和 反向代理 服务器,也是一个 IMAP/POP3/SMTP 代理服务器。 Nginx 是由 Igor Sysoev 为俄罗斯访问量第二的 Rambler.ru 站点开发的,第一个公开版本0.1.0发布于2004年10月4日。其将源代码以类BSD许可证的形式发布,因它的稳定性、丰富的功能集、示例配置文件和低系统资源
- java servelet异步处理请求
墙头上一根草
java异步返回servlet
servlet3.0以后支持异步处理请求,具体是使用AsyncContext ,包装httpservletRequest以及httpservletResponse具有异步的功能,
final AsyncContext ac = request.startAsync(request, response);
ac.s
- 我的spring学习笔记8-Spring中Bean的实例化
aijuans
Spring 3
在Spring中要实例化一个Bean有几种方法:
1、最常用的(普通方法)
<bean id="myBean" class="www.6e6.org.MyBean" />
使用这样方法,按Spring就会使用Bean的默认构造方法,也就是把没有参数的构造方法来建立Bean实例。
(有构造方法的下个文细说)
2、还
- 为Mysql创建最优的索引
annan211
mysql索引
索引对于良好的性能非常关键,尤其是当数据规模越来越大的时候,索引的对性能的影响越发重要。
索引经常会被误解甚至忽略,而且经常被糟糕的设计。
索引优化应该是对查询性能优化最有效的手段了,索引能够轻易将查询性能提高几个数量级,最优的索引会比
较好的索引性能要好2个数量级。
1 索引的类型
(1) B-Tree
不出意外,这里提到的索引都是指 B-
- 日期函数
百合不是茶
oraclesql日期函数查询
ORACLE日期时间函数大全
TO_DATE格式(以时间:2007-11-02 13:45:25为例)
Year:
yy two digits 两位年 显示值:07
yyy three digits 三位年 显示值:007
- 线程优先级
bijian1013
javathread多线程java多线程
多线程运行时需要定义线程运行的先后顺序。
线程优先级是用数字表示,数字越大线程优先级越高,取值在1到10,默认优先级为5。
实例:
package com.bijian.study;
/**
* 因为在代码段当中把线程B的优先级设置高于线程A,所以运行结果先执行线程B的run()方法后再执行线程A的run()方法
* 但在实际中,JAVA的优先级不准,强烈不建议用此方法来控制执
- 适配器模式和代理模式的区别
bijian1013
java设计模式
一.简介 适配器模式:适配器模式(英语:adapter pattern)有时候也称包装样式或者包装。将一个类的接口转接成用户所期待的。一个适配使得因接口不兼容而不能在一起工作的类工作在一起,做法是将类别自己的接口包裹在一个已存在的类中。 &nbs
- 【持久化框架MyBatis3三】MyBatis3 SQL映射配置文件
bit1129
Mybatis3
SQL映射配置文件一方面类似于Hibernate的映射配置文件,通过定义实体与关系表的列之间的对应关系。另一方面使用<select>,<insert>,<delete>,<update>元素定义增删改查的SQL语句,
这些元素包含三方面内容
1. 要执行的SQL语句
2. SQL语句的入参,比如查询条件
3. SQL语句的返回结果
- oracle大数据表复制备份个人经验
bitcarter
oracle大表备份大表数据复制
前提:
数据库仓库A(就拿oracle11g为例)中有两个用户user1和user2,现在有user1中有表ldm_table1,且表ldm_table1有数据5千万以上,ldm_table1中的数据是从其他库B(数据源)中抽取过来的,前期业务理解不够或者需求有变,数据有变动需要重新从B中抽取数据到A库表ldm_table1中。
- HTTP加速器varnish安装小记
ronin47
http varnish 加速
上午共享的那个varnish安装手册,个人看了下,有点不知所云,好吧~看来还是先安装玩玩!
苦逼公司服务器没法连外网,不能用什么wget或yum命令直接下载安装,每每看到别人博客贴出的在线安装代码时,总有一股羡慕嫉妒“恨”冒了出来。。。好吧,既然没法上外网,那只能麻烦点通过下载源码来编译安装了!
Varnish 3.0.4下载地址: http://repo.varnish-cache.org/
- java-73-输入一个字符串,输出该字符串中对称的子字符串的最大长度
bylijinnan
java
public class LongestSymmtricalLength {
/*
* Q75题目:输入一个字符串,输出该字符串中对称的子字符串的最大长度。
* 比如输入字符串“google”,由于该字符串里最长的对称子字符串是“goog”,因此输出4。
*/
public static void main(String[] args) {
Str
- 学习编程的一点感想
Cb123456
编程感想Gis
写点感想,总结一些,也顺便激励一些自己.现在就是复习阶段,也做做项目.
本专业是GIS专业,当初觉得本专业太水,靠这个会活不下去的,所以就报了培训班。学习的时候,进入状态很慢,而且当初进去的时候,已经上到Java高级阶段了,所以.....,呵呵,之后有点感觉了,不过,还是不好好写代码,还眼高手低的,有
- [能源与安全]美国与中国
comsci
能源
现在有一个局面:地球上的石油只剩下N桶,这些油只够让中国和美国这两个国家中的一个顺利过渡到宇宙时代,但是如果这两个国家为争夺这些石油而发生战争,其结果是两个国家都无法平稳过渡到宇宙时代。。。。而且在战争中,剩下的石油也会被快速消耗在战争中,结果是两败俱伤。。。
在这个大
- SEMI-JOIN执行计划突然变成HASH JOIN了 的原因分析
cwqcwqmax9
oracle
甲说:
A B两个表总数据量都很大,在百万以上。
idx1 idx2字段表示是索引字段
A B 两表上都有
col1字段表示普通字段
select xxx from A
where A.idx1 between mmm and nnn
and exists (select 1 from B where B.idx2 =
- SpringMVC-ajax返回值乱码解决方案
dashuaifu
AjaxspringMVCresponse中文乱码
SpringMVC-ajax返回值乱码解决方案
一:(自己总结,测试过可行)
ajax返回如果含有中文汉字,则使用:(如下例:)
@RequestMapping(value="/xxx.do") public @ResponseBody void getPunishReasonB
- Linux系统中查看日志的常用命令
dcj3sjt126com
OS
因为在日常的工作中,出问题的时候查看日志是每个管理员的习惯,作为初学者,为了以后的需要,我今天将下面这些查看命令共享给各位
cat
tail -f
日 志 文 件 说 明
/var/log/message 系统启动后的信息和错误日志,是Red Hat Linux中最常用的日志之一
/var/log/secure 与安全相关的日志信息
/var/log/maillog 与邮件相关的日志信
- [应用结构]应用
dcj3sjt126com
PHPyii2
应用主体
应用主体是管理 Yii 应用系统整体结构和生命周期的对象。 每个Yii应用系统只能包含一个应用主体,应用主体在 入口脚本中创建并能通过表达式 \Yii::$app 全局范围内访问。
补充: 当我们说"一个应用",它可能是一个应用主体对象,也可能是一个应用系统,是根据上下文来决定[译:中文为避免歧义,Application翻译为应
- assertThat用法
eksliang
JUnitassertThat
junit4.0 assertThat用法
一般匹配符1、assertThat( testedNumber, allOf( greaterThan(8), lessThan(16) ) );
注释: allOf匹配符表明如果接下来的所有条件必须都成立测试才通过,相当于“与”(&&)
2、assertThat( testedNumber, anyOf( g
- android点滴2
gundumw100
应用服务器android网络应用OSHTC
如何让Drawable绕着中心旋转?
Animation a = new RotateAnimation(0.0f, 360.0f,
Animation.RELATIVE_TO_SELF, 0.5f, Animation.RELATIVE_TO_SELF,0.5f);
a.setRepeatCount(-1);
a.setDuration(1000);
如何控制Andro
- 超简洁的CSS下拉菜单
ini
htmlWeb工作html5css
效果体验:http://hovertree.com/texiao/css/3.htmHTML文件:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>简洁的HTML+CSS下拉菜单-HoverTree</title>
- kafka consumer防止数据丢失
kane_xie
kafkaoffset commit
kafka最初是被LinkedIn设计用来处理log的分布式消息系统,因此它的着眼点不在数据的安全性(log偶尔丢几条无所谓),换句话说kafka并不能完全保证数据不丢失。
尽管kafka官网声称能够保证at-least-once,但如果consumer进程数小于partition_num,这个结论不一定成立。
考虑这样一个case,partiton_num=2
- @Repository、@Service、@Controller 和 @Component
mhtbbx
DAOspringbeanprototype
@Repository、@Service、@Controller 和 @Component 将类标识为Bean
Spring 自 2.0 版本开始,陆续引入了一些注解用于简化 Spring 的开发。@Repository注解便属于最先引入的一批,它用于将数据访问层 (DAO 层 ) 的类标识为 Spring Bean。具体只需将该注解标注在 DAO类上即可。同时,为了让 Spring 能够扫描类
- java 多线程高并发读写控制 误区
qifeifei
java thread
先看一下下面的错误代码,对写加了synchronized控制,保证了写的安全,但是问题在哪里呢?
public class testTh7 {
private String data;
public String read(){
System.out.println(Thread.currentThread().getName() + "read data "
- mongodb replica set(副本集)设置步骤
tcrct
javamongodb
网上已经有一大堆的设置步骤的了,根据我遇到的问题,整理一下,如下:
首先先去下载一个mongodb最新版,目前最新版应该是2.6
cd /usr/local/bin
wget http://fastdl.mongodb.org/linux/mongodb-linux-x86_64-2.6.0.tgz
tar -zxvf mongodb-linux-x86_64-2.6.0.t
- rust学习笔记
wudixiaotie
学习笔记
1.rust里绑定变量是let,默认绑定了的变量是不可更改的,所以如果想让变量可变就要加上mut。
let x = 1; let mut y = 2;
2.match 相当于erlang中的case,但是case的每一项后都是分号,但是rust的match却是逗号。
3.match 的每一项最后都要加逗号,但是最后一项不加也不会报错,所有结尾加逗号的用法都是类似。
4.每个语句结尾都要加分