实际上,我们的终极目的是要找出连续的两层楼i,i+1在楼层i鸡蛋没有摔碎,在楼层i+1鸡蛋碎了,问题的关键之处在于,测试之前,你并不知道鸡蛋会在哪一层摔碎,你需要找到的是一种测试方案,这种测试方案,无论鸡蛋会在哪层被摔碎,都至多只需要m次测试,在所有这些测试方案中,m的值最小。
对于只有1颗鸡蛋的情况,我们别无选择,只能从1楼开始,逐层向上测试,直到第i层鸡蛋摔碎为止,这时我们知道,会让鸡蛋摔碎的楼层就是i(或者直到顶层,鸡蛋也没有被摔碎),其他的测试方案均不可行,因为如果第1次测试是在任何i>1的楼层扔下鸡蛋,如果鸡蛋碎了,你就无法确定,i-1层是否也会令鸡蛋摔碎。所以对于1颗鸡蛋而言,最坏的情况是使鸡蛋摔碎的楼层数i>=36,此时,我们需要测试每个楼层,总共36次,才能找到最终结果,所以1颗鸡蛋一定能解决36层楼问题的最少测试次数是36.
对于2个鸡蛋,36层楼的情况,你可能会考虑先在第18层扔一颗,如果这颗碎了,则你从第1层,到第17层,依次用第2颗鸡蛋测试,直到找出答案。如果第1颗鸡蛋没碎,则你依然可以用第1颗鸡蛋在27层进行测试,如果碎了,在第19~26层,用第2颗鸡蛋依次测试,如果没碎,则用第1颗鸡蛋在32层进行测试,……,如此进行(有点类似于二分查找)。这个解决方案的最坏情况出现在结果是第17/18层时,此时,你需要测试18次才能找到最终答案,所以该方案,解决36层楼问题的测试次数是18.
相较于1颗鸡蛋解决36层楼问题,测试次数实现了减半,但是18并不是确保解决2颗鸡蛋,36层楼问题的最小值(实际的最小值是8).
我们可以将这样的问题简记为W(n,k),其中n代表可用于测试的鸡蛋数,k代表被测试的楼层数。对于问题W(2,36)我们可以如此考虑,将第1颗鸡蛋,在第i层扔下(i可以为1~k的任意值),如果碎了,则我们需要用第2颗鸡蛋,解决从第1层到第i-1层楼的子问题W(1,i-1),如果这颗鸡蛋没碎,则我们需要用这两颗鸡蛋,解决从i+1层到第36层的子问题W(2,36-i),解决这两个问题,可以分别得到一个尝试次数p,q,我们取这两个次数中的较大者(假设是p),与第1次在i层执行测试的这1次相加,则p+1就是第一次将鸡蛋仍在i层来解决W(2,36)所需的最少测试次数次数ti。对于36层楼的问题,第一次,我们可以把鸡蛋仍在36层中的任何一层,所以可以得到36中解决方案的测试次数T{t1,t2,t3,……,t36},在这些结果中,我们选取最小的ti,使得对于集合T中任意的值tj(1<=j<=36,j!=i),都有ti<=tj,则ti就是这个问题的答案。用公式来描述就是W(n, k) = 1 + min{max(W(n -1, x -1), W(n, k - x))}, x in {2, 3, ……,k},其中x是第一次的测试的楼层位置。
其中W(1,k) = k(相当于1颗鸡蛋测试k层楼问题),W(0,k) = 0,W(n, 0) = 0
所以在计算W(2,36)之前,我们需先计算出所有W(1,0),……,W(1,36),W(2,0),……,W(2,35)这些的值,可以用递推的方法实现,代码如下:
unsigned int DroppingEggsPuzzle(unsigned int eggs, unsigned int floors)
{
unsigned int i, j, k, t, max;
unsigned int temp[eggs + 1][floors + 1];
for(i = 0; i < floors + 1; ++i)
{
temp[0][i] = 0;
temp[1][i] = i;
}
for(i = 2; i < eggs + 1; ++i)
{
temp[i][0] = 0;
temp[i][1] = 1;
}
for(i = 2; i < eggs + 1; ++i)
{
for(j = 2; j < floors + 1; ++j)
{
for(k = 1, max = UINT_MAX; k < j; ++k)
{
t = temp[i][j - k] > temp[i - 1][k -1] ? temp[i][j - k] : temp[i - 1][k -1];
if(max > t)
{
max = t;
}
}
temp[i][j] = max + 1;
}
}
return temp[eggs][floors];
}
该算法的空间复杂度是O(nk),时间复杂度是O(nk^2),对于规模较大的问题,无论是空间还是时间复杂度都很可观。
这个算法可以计算出W(2,36)问题的最少测试次数是8,但是却不能给出用2颗鸡蛋解决36层楼问题的具体方案,这里我就给出一个测试方案:
该方案可以保证,无论满足条件的楼层是多少,都可以在最多8次测试之后找到答案,例如目标楼层为28时,该方案的测试顺序为8,15,21,26,30,27,28,总共测试7次,有兴趣的读者可以尝试一下其他情况。
该方案解决W(2,36)问题比较优雅,但是却暗藏一个很大的玄机,那就是一般我们见到的这个问题的题面,往往是W(2,15),W(2,36),不知道读者考虑过没有,为什么非让我们计算2颗鸡蛋测试36层楼的情况,而不是35层或者37层?下面是用之前的算法解决W(4,50)问题的递推结果表格(其中,行代表楼层数1~50,列代表鸡蛋数1~4),我们会发现,W(2,36)=8,W(2,37) = 9,那么是不是用2颗鸡蛋测试8次,最多只能解决36层楼问题,对于37层就无能为力了呢?
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 |
1 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 5 | 6 | 6 | 6 | 6 | 6 | 6 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 10 | 10 | 10 | 10 | 10 |
1 | 2 | 2 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 |
1 | 2 | 2 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
这里引出了一个问题:n个鸡蛋,测试m次(简记为D(n,m)),最大可以解决几层楼的问题,通过对递推结果表格的观察,我们可以得到如下结论
对于第二点,以D(4,4)为例,我们第1次在8楼扔下鸡蛋,如果碎了,则第二次在4楼扔下鸡蛋,否则在12楼扔下鸡蛋,对于在4楼扔下鸡蛋的情况,之后可以分别在2楼或者6楼扔下鸡蛋,如此进行,就可以找到答案楼层,方法与二分查找一样。例如答案楼层是5的情况,测试序列为8,4,6,5。
对于第三点,如果有5个鸡蛋让你测试3次,即使三次测试鸡蛋都碎了,剩下的2个鸡蛋也派不上用场,所以D(5,3) = D(3,3)
发现这些关系之后,我们似乎找到解决n个鸡蛋测试m次最大能够解决楼层数的方法。对于D(n,m){n < m}而言,对于其能够测试的最大楼层数k,我们可以构造这样的场景,将第一颗鸡蛋仍在楼层i,使得第i + 1层到第k层是D(n,m-1)可以解决的最大楼层数,第1层到第i - 1层是D(n-1,m-1)可以解决的最大楼层数,由此得到递推关系D(n,m) = D(n -1,m-1) + 1 + D(n,m-1),然后对D(n,m-1),D(n-1,m-1)再按照上述公式分解,直到得出刚才所列的三种可计算情况(n = 1,或者m <= n)为止,再进行回溯累加,就可以得到D(n,m)的值,代码如下:
unsigned int DroppingMax(unsigned int eggs, unsigned times)
{
if(eggs == 1)
{
return times;
}
if(eggs >= times)
{
return (unsigned int)pow(2, times) - 1;
}
return DroppingMax(eggs, times -1) + DroppingMax(eggs -1, times - 1) + 1;
}
根据此算法,我们可以得出D(2,5)=15,D(2,8)=36,也就是说,2个鸡蛋测试5次最多可以解决15层楼的问题,测试8次最多可以解决36层楼的问题。可见,出这个题的人并不是随便找两个楼层数陪咱们玩玩,而是对此问题认真研读后的结果。有了此利器之后,我们解决扔鸡蛋问题的的方法将得到大幅简化,对于n个鸡蛋解决k层楼的问题我们只需找到这样的值m,使得D(n,m-1)unsigned int DroppingEggsPuzzle2(unsigned int eggs, unsigned int floors)
{
unsigned int times = 1;
while(DroppingMax(eggs, times) < floors)
{
++times;
}
return times;
}
该算法的时间和空间复杂度不太好分析,但都要好于传统的DP算法,有兴趣的读者可以推敲一下,在我的机器上测试10个鸡蛋,5000层楼的情况,第二个方法比第一个要快10万倍!注意到算法2也是一个动态规划问题,所以可以用一个n*m的矩阵来保存计算过程中的中间结果,算法的效率还可以得到很大提升!
不管是算法1,还是算法2,都没有给出用n个鸡蛋如何通过m次测试,解决k层楼的问题,对此我根据算法2给出一个思路。对于满足条件D(n,m-1)
这其中每个单独的1,都代表一次独立测试,这些1后面中的中括号代表其是第几次独立测试,与其从公式中分离出来的时机相关,最早分离出来的1,其值就是[1],第二次分离出来的1,其值就是[2],这些1的目的就是把k层楼分解为若干个可直接计算的子部分。我们取出两者不同的部分D(1,3)+1[2]+D(1,2)+1[3]+D(2,2)+1[1],这部分表示通过增加了一次测试,我们所获得的额外的探测能力,通过改造这部,使得这部分的和等于k-D(n,m-1),然后将改装部分与两者的相同部分结合,形成新的结果,这些结果从前到后,对应着楼层从下到上的测试方案
上例中我们知道D(3,4)=14, D(3,5)=25,对于14 < k <= 25,我们用k减去14得到需要构造的值,尽量保留右侧的算式,只改变最左侧的算式,例如对于k = 15,不同部分可以用1替换,对于k = 16可以用D(1,1)+1替换,对于k = 18可以用D(2,2)+1替换,对于k = 21可以用D(1,2)+1+D(2,2)+1替换。以21为例,我们将改造结果和D(3,4),D(3,5)的相同部分结合,形成
D(1,2)+1[2]+D(2,2)+1[1]+D(1,2)+1[3]+D(2,2)+1[2]+D(3,3)