- MoveNet: PyTorch实现的轻量级人体姿态估计框架
侯深业Dorian
MoveNet:PyTorch实现的轻量级人体姿态估计框架movenet.pytorch项目地址:https://gitcode.com/gh_mirrors/mo/movenet.pytorchMoveNet是一个基于PyTorch的人体姿态估计算法实现,由开发者fire717贡献至GitCode平台。该项目旨在提供一个高效、易用的解决方案,用于实时处理视频或图像中的人体动作识别。通过其强大的性
- python计算机视觉第四章----照相机模型与增强现实
weixin_45154388
文章目录1、针孔照相机模型1.1照相机矩阵1.2三维点的投影1.3照相机矩阵的分解1.4照相机中心2、照相机标定3、以平面和标记物进行姿态估计4、增强现实4.1PyGame和PyOpenGL4.2从照相机矩阵到OpenGL格式4.3在图像中放置物体1、针孔照相机模型针孔照相机模型(有时称为射影照相机模型)是计算机视觉中广泛使用的照相机模型。对于大多数应用来说,针孔照相机模型简单,并且具有足够的精确
- Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation
MatthewHsw
SimplePose
arxiv:https://arxiv.org/pdf/1911.10529.pdfgithub:https://github.com/jialee93/Improved-Body-Parts原作者在知乎有讲解,链接既然是Rethinking,那么就要先只出需要rethinking的内容.文章主要针对于人体姿态估计中的bottom-up的方法,提出了关于bottom-up方法里的一些问题的思考:人
- 基于x86 平台opencv的图像采集和seetaface6的人脸朝向姿态估计功能
小菜鸟学开发
图像处理相关移植及应用opencv人工智能计算机视觉
目录一、概述二、环境要求2.1硬件环境2.2软件环境三、开发流程3.1编写测试3.2配置资源文件3.2验证功能一、概述本文档是针对x86平台opencv的图像采集和seetaface6的人脸朝向姿态估计功能,opencv通过摄像头采集视频图像,将采集的视频图像送给seetaface6的人脸朝向姿态估计模块从而实现人脸朝向姿态估计功能。测试结果如下图所示:人脸朝向姿态估计识别结果本编者,不好意思露脸
- 【论文阅读】【yolo系列】YOLO-Pose的论文阅读
magic_ll
yolo系列深度学习相关的论文阅读论文阅读YOLO
Abstract我们介绍YOLO-pose,一种无热图联合检测的新方法,基于流行的YOLO目标检测框架的图像二维多人姿态估计。【现有方法的问题】现有的基于热图的两阶段方法是次优的,因为它们不是端到端可训练的,训练依赖于surrogateL1loss,该损失不能直接优化评估指标–目标关键点相似度(OKS)。【ours优势:端到端训练,并优化OKS指标本身,无复杂的后处理】该模型学习了在一次前向传递中
- 3D人体姿态估计(教程+代码)
毕设阿力
3d计算机视觉深度学习
3D人体姿态估计是指通过计算机视觉技术和深度学习算法,从图像或视频数据中准确地推测出人体的三维姿态信息,包括关节位置、角度和运动轨迹等。这项技术在虚拟现实、增强现实、运动分析、人体动作捕捉等领域具有广泛的应用前景。实现3D人体姿态估计的关键挑战之一是从二维图像中还原出人体的三维结构。通常,这需要使用多视角图像、深度传感器或者先进的深度学习模型来提取更丰富的信息以重建三维姿态。目前,基于深度学习的方
- 论文阅读:《Deep Learning-Based Human Pose Estimation: A Survey》——Part 1:2D HPE
自信且放光芒66
深度学习论文阅读深度学习人工智能
目录人体姿态识别概述论文框架HPE分类人体建模模型二维单人姿态估计回归方法目前发展优化基于热图的方法基于CNN的几个网络利用身体结构信息提供构建HPE网络视频序列中的人体姿态估计2D多人姿态识别方法自上而下自下而上2DHPE总结数据集和评估指标2DHPE数据集2DHPE评价指标2DHPE方法性能的比较单人2DHPE多人2DHPE未来展望人体姿态识别概述应用模块:人机交互、运动分析、增强现实、虚拟现
- 利用YOLOv8 pose estimation 进行 人的 头部等马赛克
shiter
大数据+AI赋能行业助力企业数字化转型最佳实践案例YOLO
文章大纲马赛克几种OpenCV实现马赛克的方法高斯模糊poseestimation定位并模糊:三角形的外接圆与膨胀系数实现实现代码实现效果参考文献与学习路径之前写过一个文章记录,怎么对人进行目标检测后打码,但是人脸识别有个问题是,很多人的背影,或者侧面无法识别出来人脸,那么我们就可以用姿态估计中的关键点信息进行补充,对人头进行打码,从而进一步的保护隐私信息。目标跟踪与检测后进行OpenCV人脸识别
- 论文解读《Zero-Shot Category-Level Object Pose Estimation》类别级6D位姿估计
ZYLer_
6D位姿估计人工智能计算机视觉
论文:《Zero-ShotCategory-LevelObjectPoseEstimation》该文整体感觉不难,处理流程比较新颖,可以重点参考。Code:https://github.com/applied-ai-lab/zero-shot-pose(48star)摘要:解决问题:实例级姿态估计的问题。=>**零样本(也就是预测未见过的物体(没有该实例的数据标记和CAD模型),类别级)**预测来
- 论文解读《Gen6D: Generalizable Model-Free 6-DoF Object Pose Estimation from RGB Images》 小样本6D位姿估计
ZYLer_
6D位姿估计机器学习人工智能计算机视觉3d深度学习
论文:《Gen6D:GeneralizableModel-Free6-DoFObjectPoseEstimationfromRGBImages》Code:https://github.com/liuyuan-pal/gen6d(469star)摘要:现有的可推广姿态估计器要么需要高质量的对象模型,要么在测试时需要额外的深度图或对象掩码,这大大限制了其应用范围。为了满足实际应用中的需求,我们认为姿态
- 最新姿态估计研究进展
a微风掠过
最新姿态估计研究进展自上而下:就是先检测包含人的框,即humanproposal,然后对框子中的人进行姿态估计。一般RCNN(区域CNN就是这个思路)自下而上:先检测keypoint,然后根据热力图、点与点之间连接的概率,根据图论知识,基于PAF(部分亲和字段)将关键点连接起来,将关键点分组到人。1、CMU:openpose研究多人的姿态估计运行环境:caffe自下而上,关键点被分组到人的实例时间
- 姿态估计概述
Diros1g
姿态估计
定义和优势单目摄像机拍摄的二维图像中预测行人的人体关键点坐标,为其他任务做支持如行人重识别、动作识别。目前分类两类:单人和多人基于计算机视觉的人体姿态佶计不需要额外的穿戴设备,该技术比传统的穿戴式动作捕捉技术成本更加低廉且灵活性更高人体姿态表示形式1.二位坐标关键点(人体主要关节)表达方式以二位坐标的形式(x,y),方法简洁,无序后处理2.空间热力图回归的数据是关键点落在该坐标的概率,优点定位更精
- 【iOS ARKit】3D人体姿态估计实例
扬帆起航&d
ios3d
与2D人体姿态检测一样,在ARKit中,我们不必关心底层的人体骨骼关节点检测算法,也不必自己去调用这些算法,在运行使用ARBodyTrackingConfiguration配置的ARSession之后,基于摄像头图像的3D人体姿态估计任务也会启动,我们可以通过session(_session:ARSession,didUpdateanchors:[ARAnchor])代理方法直接获取检测到的ARB
- 【iOS ARKit】3D 人体姿态估计
扬帆起航&d
ios3d
与基于屏幕空间的2D人体姿态估计不同,3D人体姿态估计是尝试还原人体在三维世界中的形状与姿态,包括深度信息。绝大多数的现有3D人体姿态估计方法依赖2D人体姿态估计,通过获取2D人体姿态后再构建神经网络算法,实现从2D到3D人体姿态的映射。在ARKit中,由于是采用计算机视觉的方式估计人体姿态,与2D人体姿态估计一样,3D人体姿态估计也受到遮挡、光照、姿态、视角的影响,并且相比于2D人体姿态估计,3
- 90+深度学习开源数据集整理|包括目标检测、工业缺陷、图像分割等多个方向...
小白学视觉
深度学习目标检测计算机视觉人工智能机器学习
点击上方“小白学视觉”,选择加"星标"或“置顶”重磅干货,第一时间送达导读本文整理汇总了90+深度学习各方向的开源数据集,包含了小目标检测、目标检测、工业缺陷检测、人脸识别、姿态估计、图像分割、图像识别等方向。小目标检测1.AI-TOD航空图像数据集数据集下载地址:http://m6z.cn/5MjlYkAI-TOD在28,036张航拍图像中包含8个类别的700,621个对象实例。与现有航拍图像中
- 最强Pose模型RTMO开源 | 基于YOLO架构再设计,9MB+9ms性能完爆YOLO-Pose
AI视觉网奇
深度学习基础姿态检测YOLO深度学习
实时多人在图像中的姿态估计面临着在速度和精度之间实现平衡的重大挑战。尽管两阶段的上下文方法在图像中人数增加时会减慢速度,但现有的单阶段方法往往无法同时实现高精度和实时性能。本文介绍了RTMO,这是一个单阶段姿态估计框架,通过在YOLO架构中使用双一维Heatmap来表示关键点,实现与自上而下方法相当的准确度,同时保持高速度。作者提出了一种动态坐标分类器和一种定制的损失函数,用于Heatmap学习,
- 论文学习笔记:PoseFix: Model-agnostic General Human Pose Refinement Network
wangyc1208
姿态估计
论文:https://arxiv.org/abs/1812.03595代码:https://github.com/mks0601/PoseFix_RELEASE—————————————————————————————————————————————————目标:多人姿态估计:本篇论文主要工作是利用一个人体姿势优化网络,从输入图像和姿势中对人体姿态进行优化。大概的效果如下图:———————————
- yolov8+多算法多目标追踪+实例分割+目标检测+姿态估计
毕设阿力
计算机视觉YOLO目标检测
YOLOv8是一种先进的目标检测算法,结合多种算法实现多目标追踪、实例分割和姿态估计功能。该算法在计算机视觉领域具有广泛的应用。首先,YOLOv8算法采用了YouOnlyLookOnce(YOLO)的思想,通过单次前向传递将目标检测问题转化为回归问题。它使用了深度卷积神经网络,能够快速而准确地检测图像中的多个目标。相比于传统的目标检测方法,YOLOv8具有更高的检测速度和更好的性能。其次,YOLO
- 多只动物3D姿态估计与行为识别系统
tzc_fly
论文阅读笔记人工智能
动物社会行为的量化是动物科学研究的重要步骤。虽然现有的深度学习方法已经实现了对常见动物的精确姿态估计、识别和行为分类,但由于缺乏注释良好的数据集,其应用依然受到挑战。因此该研究展示了一个计算框架,即社会行为图谱(SBeA,SocialBehaviorAtlas),用于克服由有限数据集引起的问题。SBeA使用数量很少的labelledframes进行多个动物的3D姿态估计,实现后续的无标签识别。SB
- 轻量级3D姿态估计
AI视觉网奇
姿态检测深度学习宝典深度学习神经网络
本文分享一款可以跑在手机上的3d姿态估计网络。效果图:算力3.92GFLOPS,而且平均每关节位置误差(MPJPE),也只有大约5厘米。用的TensorFlow平台开发,开源了onnx模型。输入是目标检测后的人体图,人体检测用的yolov5。网络结构:编码器-解码器在编码器用于全局特征提取,而解码器进行姿态估计的基础架构,研究团队对其主干网络、激活函数,以及Skipconcatenation功能都
- 基于 pytorch-openpose 实现 “多目标” 人体姿态估计
北桥苏
pytorch人工智能python
前言还记得上次通过MediaPipe估计人体姿态关键点驱动3D角色模型,虽然节省了动作K帧时间,但是网上还有一种似乎更方便的方法。MagicAnimate就是其一,说是只要提供一张人物图片和一段动作视频(舞蹈武术等),就可以完成图片人物转视频。于是我就去官网体验了一下,发现动作的视频长度不能超过5秒,当然,如果说要整长视频可以切多段处理再合成解决。主要的还是视频需要那种背景相对较纯的,不然提交表单
- 【时间序列篇】基于LSTM的序列分类-Pytorch实现 part3 化为己用
钟的子期
深度学习lstm分类pytorch
系列文章目录【时间序列篇】基于LSTM的序列分类-Pytorch实现part1案例复现【时间序列篇】基于LSTM的序列分类-Pytorch实现part2自有数据集构建【时间序列篇】基于LSTM的序列分类-Pytorch实现part3化为己用在一个人体姿态估计的任务中,需要用深度学习模型来进行序列分类。化为己用,实现成功。文章目录系列文章目录前言一、模型训练1导入库和自用函数2导入数据集3设备部署4
- 【时间序列篇】基于LSTM的序列分类-Pytorch实现 part2 自有数据集构建
钟的子期
深度学习lstm分类pytorch
系列文章目录【时间序列篇】基于LSTM的序列分类-Pytorch实现part1案例复现【时间序列篇】基于LSTM的序列分类-Pytorch实现part2自有数据集构建【时间序列篇】基于LSTM的序列分类-Pytorch实现part3化为己用在一个人体姿态估计的任务中,需要用深度学习模型来进行序列分类。时间花费最多的是在数据集的处理上。这一节主要内容就是对数据集的处理。文章目录系列文章目录前言一、任
- 最新!无需任何SFM预处理,实现精确相机姿态估计和逼真场景重建
3DCV
人工智能计算机视觉算法学习深度学习
作者:石昊|来源:3DCV在公众号「3DCV」后台,回复「原论文」可获取论文pdf从图像序列中进行相机姿态估计和新视角合成的问题。以往的方法在处理大相机运动时存在困难,或者需要非常长的训练时间。为了解决这个问题,本文提出了一种新的端到端框架,利用三维高斯点云表示场景,并结合视频流中的连续性进行相机姿态估计和新视角合成。与NeRF等方法不同,本文的方法利用显式的点云表示场景,通过利用三维高斯点云的能
- 开启虚拟人物互动新时代:探索相芯Avatar SDK驱动功能(Android)
相芯科技Faceunity
android实时音视频图像处理计算机视觉opencv
相芯SDK提供的Avatar驱动功能是一种基于人工智能技术的功能,它可以通过用户的面部表情和动作来实时驱动和控制虚拟角色或虚拟人物。这个功能可以将用户的面部表情和动作实时映射到虚拟角色身上,使得虚拟角色能够模仿和响应用户的实时表情和动作。具体来说,相芯SDK的Avatar驱动功能利用了人脸识别、人脸关键点检测、面部表情识别和姿态估计等技术。通过实时识别和分析用户的面部表情和姿态,SDK能够生成相应
- 基于YOLOv8的目标识别、计数、电子围栏的项目开发过程
挑大梁
机器视觉YOLO人工智能python算法目标检测目标跟踪pytorch
0前言用于生产环境中物体检测、识别、跟踪,人、车流量统计,越界安全识别1YOLOv8概述YOLOv8是Ultralytics的YOLO的最新版本。作为一种前沿、最先进(SOTA)的模型,YOLOv8在之前版本的成功基础上引入了新功能和改进,以提高性能、灵活性和效率。YOLOv8支持全范围的视觉AI任务,包括检测、分割,、姿态估计、跟踪和分类。这种多功能性使用户能够利用YOLOv8的功能应对多种应用
- OpenCV 新版滴 4.5.1 发布啦!
AAI机器之心
opencv人工智能计算机视觉机器学习dnnKNNcnn
发布亮点:OpenCVGithub项目终于突破50000stars!新的里程碑~这次发布的特性包括:集成更多的GSoC2020项目的结果,包括:开发了OpenCV.jsDNN模块,以方便再网页中使用,并提供了相关教程。图像分类目标检测风格迁移语义分割姿态估计OpenCV.jsWASMSIMD优化2.0,网页端调用OpenCV更快了新增文本检测和识别高级APISIFT算法优化,主要是16位整型高斯滤
- CVPR 2023: Analyzing and Diagnosing Pose Estimation With Attributions
结构化文摘
人工智能机器学习深度学习
我们从以下六个维度对论文选题进行分类:1.研究重点:姿态估计:这个类别涵盖了旨在直接预测来自各种输入(如图像或视频)的身体部位(关节、肢体)的空间配置的研究。例如,使用深度学习网络直接回归关键点坐标或生成突出显示可能的关节位置的热图的研究。可解释性方法:这个领域专注于理解姿态估计模型如何做出决策。梯度基于归因方法的技术可视化输入中影响模型预测的区域,提供其推理过程的见解。表示学习:这个研究领域围绕
- Mediapipe框架介绍及使用说明
图灵追慕者
mediapipe姿态估计音视频识别Google谷歌
介绍Mediapipe是Google开发的一款开源的跨平台框架,用于构建实时多媒体应用程序。它提供了一系列预训练的机器学习模型和工具,可以用于各种计算机视觉、音频处理和姿态估计等任务。特点Mediapipe库的主要特点包括:1.实时性能:提供高效的实时处理能力,适用于实时应用程序和流媒体处理。2.跨平台支持:支持在多个平台上运行,包括Android、iOS、Windows和Linux等。3.灵活性
- DLL:一个用于空中机器人的基于地图的定位框架
缄默0603
无人机定位机器人无人机定位Lidar点云
在没有全球定位系统(GPS)或外部定位设备(如激光反射器)的情况下,为了使无人驾驶飞行器(uav)能够有效运作,研究人员必须开发自动估计机器人姿态的技术。如果无人机运行的环境不经常变化,并且能够构建该环境的3D地图,基于地图的机器人定位技术可以相当有效。理想情况下,基于地图的姿态估计方法应该是高效、鲁棒和可靠的,因为它们应该迅速地向机器人发送它需要的信息,以计划其未来的行动和运动。3D光探测和测距
- java线程的无限循环和退出
3213213333332132
java
最近想写一个游戏,然后碰到有关线程的问题,网上查了好多资料都没满足。
突然想起了前段时间看的有关线程的视频,于是信手拈来写了一个线程的代码片段。
希望帮助刚学java线程的童鞋
package thread;
import java.text.SimpleDateFormat;
import java.util.Calendar;
import java.util.Date
- tomcat 容器
BlueSkator
tomcatWebservlet
Tomcat的组成部分 1、server
A Server element represents the entire Catalina servlet container. (Singleton) 2、service
service包括多个connector以及一个engine,其职责为处理由connector获得的客户请求。
3、connector
一个connector
- php递归,静态变量,匿名函数使用
dcj3sjt126com
PHP递归函数匿名函数静态变量引用传参
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Current To-Do List</title>
</head>
<body>
- 属性颜色字体变化
周华华
JavaScript
function changSize(className){
var diva=byId("fot")
diva.className=className;
}
</script>
<style type="text/css">
.max{
background: #900;
color:#039;
- 将properties内容放置到map中
g21121
properties
代码比较简单:
private static Map<Object, Object> map;
private static Properties p;
static {
//读取properties文件
InputStream is = XXX.class.getClassLoader().getResourceAsStream("xxx.properti
- [简单]拼接字符串
53873039oycg
字符串
工作中遇到需要从Map里面取值拼接字符串的情况,自己写了个,不是很好,欢迎提出更优雅的写法,代码如下:
import java.util.HashMap;
import java.uti
- Struts2学习
云端月影
最近开始关注struts2的新特性,从这个版本开始,Struts开始使用convention-plugin代替codebehind-plugin来实现struts的零配置。
配置文件精简了,的确是简便了开发过程,但是,我们熟悉的配置突然disappear了,真是一下很不适应。跟着潮流走吧,看看该怎样来搞定convention-plugin。
使用Convention插件,你需要将其JAR文件放
- Java新手入门的30个基本概念二
aijuans
java新手java 入门
基本概念: 1.OOP中唯一关系的是对象的接口是什么,就像计算机的销售商她不管电源内部结构是怎样的,他只关系能否给你提供电就行了,也就是只要知道can or not而不是how and why.所有的程序是由一定的属性和行为对象组成的,不同的对象的访问通过函数调用来完成,对象间所有的交流都是通过方法调用,通过对封装对象数据,很大限度上提高复用率。 2.OOP中最重要的思想是类,类是模板是蓝图,
- jedis 简单使用
antlove
javarediscachecommandjedis
jedis.RedisOperationCollection.java
package jedis;
import org.apache.log4j.Logger;
import redis.clients.jedis.Jedis;
import java.util.List;
import java.util.Map;
import java.util.Set;
pub
- PL/SQL的函数和包体的基础
百合不是茶
PL/SQL编程函数包体显示包的具体数据包
由于明天举要上课,所以刚刚将代码敲了一遍PL/SQL的函数和包体的实现(单例模式过几天好好的总结下再发出来);以便明天能更好的学习PL/SQL的循环,今天太累了,所以早点睡觉,明天继续PL/SQL总有一天我会将你永远的记载在心里,,,
函数;
函数:PL/SQL中的函数相当于java中的方法;函数有返回值
定义函数的
--输入姓名找到该姓名的年薪
create or re
- Mockito(二)--实例篇
bijian1013
持续集成mockito单元测试
学习了基本知识后,就可以实战了,Mockito的实际使用还是比较麻烦的。因为在实际使用中,最常遇到的就是需要模拟第三方类库的行为。
比如现在有一个类FTPFileTransfer,实现了向FTP传输文件的功能。这个类中使用了a
- 精通Oracle10编程SQL(7)编写控制结构
bijian1013
oracle数据库plsql
/*
*编写控制结构
*/
--条件分支语句
--简单条件判断
DECLARE
v_sal NUMBER(6,2);
BEGIN
select sal into v_sal from emp
where lower(ename)=lower('&name');
if v_sal<2000 then
update emp set
- 【Log4j二】Log4j属性文件配置详解
bit1129
log4j
如下是一个log4j.properties的配置
log4j.rootCategory=INFO, stdout , R
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appe
- java集合排序笔记
白糖_
java
public class CollectionDemo implements Serializable,Comparable<CollectionDemo>{
private static final long serialVersionUID = -2958090810811192128L;
private int id;
private String nam
- java导致linux负载过高的定位方法
ronin47
定位java进程ID
可以使用top或ps -ef |grep java
![图片描述][1]
根据进程ID找到最消耗资源的java pid
比如第一步找到的进程ID为5431
执行
top -p 5431 -H
![图片描述][2]
打印java栈信息
$ jstack -l 5431 > 5431.log
在栈信息中定位具体问题
将消耗资源的Java PID转
- 给定能随机生成整数1到5的函数,写出能随机生成整数1到7的函数
bylijinnan
函数
import java.util.ArrayList;
import java.util.List;
import java.util.Random;
public class RandNFromRand5 {
/**
题目:给定能随机生成整数1到5的函数,写出能随机生成整数1到7的函数。
解法1:
f(k) = (x0-1)*5^0+(x1-
- PL/SQL Developer保存布局
Kai_Ge
近日由于项目需要,数据库从DB2迁移到ORCAL,因此数据库连接客户端选择了PL/SQL Developer。由于软件运用不熟悉,造成了很多麻烦,最主要的就是进入后,左边列表有很多选项,自己删除了一些选项卡,布局很满意了,下次进入后又恢复了以前的布局,很是苦恼。在众多PL/SQL Developer使用技巧中找到如下这段:
&n
- [未来战士计划]超能查派[剧透,慎入]
comsci
计划
非常好看,超能查派,这部电影......为我们这些热爱人工智能的工程技术人员提供一些参考意见和思想........
虽然电影里面的人物形象不是非常的可爱....但是非常的贴近现实生活....
&nbs
- Google Map API V2
dai_lm
google map
以后如果要开发包含google map的程序就更麻烦咯
http://www.cnblogs.com/mengdd/archive/2013/01/01/2841390.html
找到篇不错的文章,大家可以参考一下
http://blog.sina.com.cn/s/blog_c2839d410101jahv.html
1. 创建Android工程
由于v2的key需要G
- java数据计算层的几种解决方法2
datamachine
javasql集算器
2、SQL
SQL/SP/JDBC在这里属于一类,这是老牌的数据计算层,性能和灵活性是它的优势。但随着新情况的不断出现,单纯用SQL已经难以满足需求,比如: JAVA开发规模的扩大,数据量的剧增,复杂计算问题的涌现。虽然SQL得高分的指标不多,但都是权重最高的。
成熟度:5星。最成熟的。
- Linux下Telnet的安装与运行
dcj3sjt126com
linuxtelnet
Linux下Telnet的安装与运行 linux默认是使用SSH服务的 而不安装telnet服务 如果要使用telnet 就必须先安装相应的软件包 即使安装了软件包 默认的设置telnet 服务也是不运行的 需要手工进行设置 如果是redhat9,则在第三张光盘中找到 telnet-server-0.17-25.i386.rpm
- PHP中钩子函数的实现与认识
dcj3sjt126com
PHP
假如有这么一段程序:
function fun(){
fun1();
fun2();
}
首先程序执行完fun1()之后执行fun2()然后fun()结束。
但是,假如我们想对函数做一些变化。比如说,fun是一个解析函数,我们希望后期可以提供丰富的解析函数,而究竟用哪个函数解析,我们希望在配置文件中配置。这个时候就可以发挥钩子的力量了。
我们可以在fu
- EOS中的WorkSpace密码修改
蕃薯耀
修改WorkSpace密码
EOS中BPS的WorkSpace密码修改
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 201
- SpringMVC4零配置--SpringSecurity相关配置【SpringSecurityConfig】
hanqunfeng
SpringSecurity
SpringSecurity的配置相对来说有些复杂,如果是完整的bean配置,则需要配置大量的bean,所以xml配置时使用了命名空间来简化配置,同样,spring为我们提供了一个抽象类WebSecurityConfigurerAdapter和一个注解@EnableWebMvcSecurity,达到同样减少bean配置的目的,如下:
applicationContex
- ie 9 kendo ui中ajax跨域的问题
jackyrong
AJAX跨域
这两天遇到个问题,kendo ui的datagrid,根据json去读取数据,然后前端通过kendo ui的datagrid去渲染,但很奇怪的是,在ie 10,ie 11,chrome,firefox等浏览器中,同样的程序,
浏览起来是没问题的,但把应用放到公网上的一台服务器,
却发现如下情况:
1) ie 9下,不能出现任何数据,但用IE 9浏览器浏览本机的应用,却没任何问题
- 不要让别人笑你不能成为程序员
lampcy
编程程序员
在经历六个月的编程集训之后,我刚刚完成了我的第一次一对一的编码评估。但是事情并没有如我所想的那般顺利。
说实话,我感觉我的脑细胞像被轰炸过一样。
手慢慢地离开键盘,心里很压抑。不禁默默祈祷:一切都会进展顺利的,对吧?至少有些地方我的回答应该是没有遗漏的,是不是?
难道我选择编程真的是一个巨大的错误吗——我真的永远也成不了程序员吗?
我需要一点点安慰。在自我怀疑,不安全感和脆弱等等像龙卷风一
- 马皇后的贤德
nannan408
马皇后不怕朱元璋的坏脾气,并敢理直气壮地吹耳边风。众所周知,朱元璋不喜欢女人干政,他认为“后妃虽母仪天下,然不可使干政事”,因为“宠之太过,则骄恣犯分,上下失序”,因此还特地命人纂述《女诫》,以示警诫。但马皇后是个例外。
有一次,马皇后问朱元璋道:“如今天下老百姓安居乐业了吗?”朱元璋不高兴地回答:“这不是你应该问的。”马皇后振振有词地回敬道:“陛下是天下之父,
- 选择某个属性值最大的那条记录(不仅仅包含指定属性,而是想要什么属性都可以)
Rainbow702
sqlgroup by最大值max最大的那条记录
好久好久不写SQL了,技能退化严重啊!!!
直入主题:
比如我有一张表,file_info,
它有两个属性(但实际不只,我这里只是作说明用):
file_code, file_version
同一个code可能对应多个version
现在,我想针对每一个code,取得它相关的记录中,version 值 最大的那条记录,
SQL如下:
select
*
- VBScript脚本语言
tntxia
VBScript
VBScript 是基于VB的脚本语言。主要用于Asp和Excel的编程。
VB家族语言简介
Visual Basic 6.0
源于BASIC语言。
由微软公司开发的包含协助开发环境的事
- java中枚举类型的使用
xiao1zhao2
javaenum枚举1.5新特性
枚举类型是j2se在1.5引入的新的类型,通过关键字enum来定义,常用来存储一些常量.
1.定义一个简单的枚举类型
public enum Sex {
MAN,
WOMAN
}
枚举类型本质是类,编译此段代码会生成.class文件.通过Sex.MAN来访问Sex中的成员,其返回值是Sex类型.
2.常用方法
静态的values()方