- 【常见滤波器】PCL 点云投影到拟合平面
X-Vision
《PCL算法案例开发》平面3dpcl计算机视觉算法点云
PCL点云投影到拟合平面-原理、实现与最佳实践目录平面投影的核心原理⚙️PCL平面投影架构基础平面投影实现高级投影技术与优化投影质量评估与分析️工程应用案例⚠️常见问题与解决方案可视化与调试平面投影的核心原理数学原理与几何概念点云投影到拟合平面是将三维点云数据降维到二维平面的过程,核心思想是正交投影:平面方程:ax+by+cz+d=0ax+by+cz+d=0ax+by+cz+d=0平面法向量:n=
- 前沿交叉:Fluent与深度学习驱动的流体力学计算体系
m0_75133639
流体力学深度学习人工智能航空航天fluent流体力学材料科学CFD
基础模块流体力学方程求解1、不可压缩N-S方程数值解法(有限差分/有限元/伪谱法)·Fluent工业级应用:稳态/瞬态流、两相流仿真(圆柱绕流、入水问题)·Tecplot流场可视化与数据导出2、CFD数据的AI预处理·基于PCA/SVD的流场数据降维·特征值分解与时空特征提取深度学习核心3.物理机理嵌入的神经网络架构·物理信息神经网络(PINN):将N-S方程嵌入损失函数(JAX框架实现)·神经常
- OpenCV图像边缘检测
慕婉0307
opencv基础opencv人工智能计算机视觉
一、边缘检测基础概念边缘检测是图像处理中最基本也是最重要的操作之一,它能识别图像中亮度或颜色急剧变化的区域,这些区域通常对应物体的边界。OpenCV提供了多种边缘检测方法,从传统的算子到基于深度学习的现代方法。1.1为什么需要边缘检测?数据降维:将图像转换为边缘表示可大幅减少数据量特征提取:边缘是图像最重要的视觉特征之一预处理步骤:为物体识别、图像分割等高级任务做准备噪声抑制:某些边缘检测方法具有
- Pandas能进行数据降维?新手如何简化分析模型?
程序化交易助手
量化软件量化投资程序化交易Python量化软件PTradeQMT量化交易量化炒股deepseek
Pandas能进行数据降维?新手如何简化分析模型?引言在量化交易的世界里,数据是一切分析的基础。但面对海量的数据,如何快速有效地提取关键信息,简化分析模型,是每个新手都需要面对的挑战。今天,我们就来聊聊如何利用Pandas这个强大的Python库来进行数据降维,以及如何简化我们的分析模型。Pandas与数据降维Pandas是Python中用于数据分析和操作的一个库,它提供了丰富的数据结构和数据分析
- 深度学习笔记
疯狂成瘾者
深度学习笔记人工智能
文章目录聚类导入模块生成模拟数据建立并训练K-Means聚类模型创建图形绘制散点图(聚类结果)获取聚类中心可视化聚类中心设置图形标题和标签输出效果数据降维一、常见的数据降维方法二、Python降维示例(用PCA将3D数据降至2D)✅第1部分:导入模块✅第2部分:生成模拟数据✅第3部分:PCA降维处理✅第4部分:开始绘图✅第5部分:绘制散点图✅第6部分:完善图像细节并显示✨最终效果数据降维的作用✅一
- 【深度学习】自编码器:数据压缩与特征学习的神经网络引擎
瑶光守护者
深度学习学习神经网络人工智能机器学习强化学习
作者选择了由IanGoodfellow、YoshuaBengio和AaronCourville三位大佬撰写的《DeepLearning》(人工智能领域的经典教程,深度学习领域研究生必读教材),开始深度学习领域学习,深入全面的理解深度学习的理论知识。之前的文章参考下面的链接:【深度学习】线性因子模型:数据降维与结构解析的数学透镜【学习笔记】强化学习:实用方法论【学习笔记】序列建模:递归神经网络(RN
- 聚类分析现状
云cia
机器学习人工智能
针对上述问题,一种结合降维技术和聚类算法的解决方案被广泛认可,即先采用降维技术,如主成分分析、局部线性嵌入或核方法等对数据进行降维,再对降维后的特征进行聚类.该方案虽然在一定程度上降低了高维空间的聚类难度,但由于数据降维是独立于聚类任务的,这意味着提取的特征往往并不具备簇类结构.子空间方法则提供另一种很好的思路.该方法假设高维数据分布于多个低维子空间的组合,通过将高维数据分割到各自所属的本征低维子
- 深入详解线性代数基础知识:理解矩阵与向量运算、特征值与特征向量,以及矩阵分解方法(如奇异值分解SVD和主成分分析PCA)在人工智能中的应用
猿享天开
人工智能数学基础专讲线性代数人工智能矩阵特征向量
深入详解线性代数基础知识在人工智能中的应用线性代数是人工智能,尤其是机器学习和深度学习领域的基石。深入理解矩阵与向量运算、特征值与特征向量,以及矩阵分解方法(如奇异值分解SVD和主成分分析PCA),对于数据降维、特征提取和模型优化至关重要。本文将详细探讨这些线性代数的核心概念及其在人工智能中的应用,并辅以示例代码以助理解。1.矩阵与向量运算线性代数中的矩阵与向量运算是理解高维数据处理和模型训练的基
- AI要掌握的知识
杰克逊的日记
人工智能AI技术
AI(人工智能)是一个跨学科的复杂领域,其知识体系涵盖理论基础、技术工具和实践应用等多个层面。以下从核心知识模块、技术工具、实践方向等角度,详细梳理AI从业者需要掌握的知识体系:一、数学基础:AI的理论基石1.线性代数核心概念:向量、矩阵、行列式、特征值与特征向量、矩阵分解(如PCA主成分分析的数学基础)。应用场景:数据降维、神经网络中的矩阵运算(如权重矩阵乘法)、图像变换(如旋转、缩放的矩阵表示
- 技术剖析|线性代数之特征值分解,支撑AI算法的数学原理
AI算力那些事儿
技术剖析线性代数人工智能算法
目录一、特征值分解的数学本质1、基本定义与核心方程2、几何解释与线性变换3、可对角化条件与分解形式二、特征值分解的计算方法1、特征多项式与代数解法2、数值计算方法3、计算实例与验证三、特征值分解在AI中的关键应用1、主成分分析(PCA)与数据降维2、图分析与网络科学3、矩阵分析与优化问题4、图像处理与信号分析四、特征值分解的扩展与相关技术1、奇异值分解(SVD)的关联2、广义特征值问题3、现代算法
- Keras深度学习实战——自编码器详解
鱼弦
机器学习设计类系统深度学习keras人工智能
鱼弦:公众号【红尘灯塔】,CSDN博客专家、内容合伙人、新星导师、全栈领域优质创作者、51CTO(Top红人+专家博主)、github开源爱好者(go-zero源码二次开发、游戏后端架构https://github.com/Peakchen)Keras深度学习实战——自编码器详解简介自编码器(AutoEncoder)是一种无监督学习算法,它通过学习输入数据的潜在表示来实现数据降维和特征提取。自编码
- AI Python 教程
Empty-Filled
人工智能python开发语言
AIPython教程为什么使用Python学习AI?AI之Python前提AIPython教程人工智能AI之Python-机器学习监督学习回归算法分类算法非监督学习聚类算法数据降维增强学习AI之Python-深度学习深度学习基础深度学习架构AI之Python-自然语言处理文本处理和表示文本处理文本表示词汇语义学AI之Python-计算机视觉图像处理和转换图像识别架构物体检测架构两步检测器单步检测器
- Python 第三方模块 机器学习 Scikit-Learn模块 矩阵分解,核近似
EdVzAs
python机器学习矩阵分解核近似
一.decomposition1.简介:该模块用于进行矩阵分解.其中大多数算法都可用于数据降维2.使用(1)类:"字典学习"(Dictionarylearning):classsklearn.decomposition.DictionaryLearning([n_components=None,alpha=1,max_iter=1000,tol=1e-08,fit_algorithm='lars'
- 基于主成分分析(PCA)的新能源汽车行驶工况数据降维实战:从理论推导到工业级应用
新能源汽车--三电老K
模型+硬件在环科普汽车数学建模
开篇:行业痛点与破局利器1.1数据洪流中的生死时速某新能源车企的实测数据显示,单辆智能汽车每天产生的工况数据高达15GB,包含200+传感器维度。在动力电池领域,电芯电压采样点超过96个,温度监测点24个,SOC估算参数18维。传统的全维度数据处理面临三大致命问题:实时性危机:BMS控制周期需≤50ms,但原始特征训练模型推理延迟高达320ms存储成本黑洞:10万辆车的年数据存储费用超过2.3亿元
- R语言统计分析——理解主成分分析和因子分析
maizeman126
R语言统计分析r语言开发语言主成分分析因子分析PCAEFA
参考资料:R语言实战【第2版】信息过度复杂是多变量数据最大的挑战之一。若数据集有100个变量,如何了解其中所有的交互关系呢?即使只有20个变量,当试图理解各个变量与其他变量的关系时,也需要考虑190对相互关系。主成分分析和探索性因子分析时两种用来探索和简化多变量复杂关系的常用方法,它们之间有联系也有区别。主成分分析(PCA)是一种数据降维技巧,它能将大量相关变量转化为一组很少的不相关变量,这些无关
- Principal函数结果解读:使用R语言进行主成分分析
创意前端
r语言开发语言R语言
Principal函数结果解读:使用R语言进行主成分分析主成分分析(PrincipalComponentAnalysis,简称PCA)是一种常用的数据降维和特征提取技术。它通过线性变换将原始数据映射到一个新的坐标系统,使得在新坐标系统中的第一个主成分(即第一维)上的方差最大,第二个主成分方差次之,以此类推。这篇文章将详细介绍如何使用R语言进行主成分分析,并解读主成分分析的结果。首先,我们需要安装并
- R语言中的principal函数结果解读
CodeRoarX
r语言python开发语言R语言
R语言中的principal函数结果解读主成分分析(PrincipalComponentAnalysis,PCA)是一种常用的数据降维和特征提取方法。在R语言中,可以使用prcomp函数来进行主成分分析。prcomp函数返回一个包含主成分分析结果的对象,我们可以通过解析该对象来获取有关主成分分析结果的详细信息。下面是一个示例代码,演示如何使用prcomp函数进行主成分分析,并解读主成分分析结果:#
- 20250412 机器学习ML -(3)数据降维(scikitlearn)
AI小白白猫
AI机器学习人工智能
1.背景数学小白一枚,看推理过程需要很多时间。好在有大神们源码和DS帮忙,教程里的推理过程才能勉强拼凑一二。*留意:推导过程中X都是向量组表达:shape(feature,sample_n);和numpy中的默认矩阵正好相反。2.PCA/KPCAPCAKPCA(LinearKernel)详细推理基本过程找教程。(详细步骤我也推不出来,数学太菜)大概过程:1.求最小|X-XWWt|^2时的W2.通过
- 数据处理和分析之数据降维:t-SNE:使用t-SNE进行数据可视化实践
kkchenkx
数据挖掘信息可视化算法聚类均值算法数据挖掘机器学习
数据处理和分析之数据降维:t-SNE:使用t-SNE进行数据可视化实践数据降维简介降维技术的重要性在数据科学和机器学习领域,数据降维是一种关键的技术,用于减少数据集的维度,同时保留数据的结构和重要信息。降维不仅可以帮助我们更有效地存储和处理数据,还能在高维数据中发现潜在的模式和结构,这对于数据可视化和模型训练尤为重要。高维数据往往难以直观理解,通过降维,我们可以将其转换为二维或三维空间,便于可视化
- 【漫话机器学习系列】129.主成分分析(Principal Component Analysis,PCA)
IT古董
漫话机器学习系列专辑机器学习人工智能
主成分分析(PCA):降维与特征提取的强大工具1.什么是主成分分析(PCA)?主成分分析(PrincipalComponentAnalysis,PCA)是一种常见的数据降维技术,主要用于将高维数据投影到低维空间,同时尽可能保留数据的主要信息。PCA通过线性变换,将原始特征变量转换为一组新的变量,这些新变量被称为主成分(PrincipalComponents)。在这张图中,我们可以看到PCA的核心概
- PCA主成分分析降维算法及其可视化(附完整版代码)
Jason_Orton
算法机器学习数据挖掘人工智能matlab
一.PCA的介绍PCA(PrincipalComponentAnalysis)是一种数据降维技术,旨在将多维指标转换为少数几个综合指标。在统计学中,PCA是简化数据集的一种方法,通过线性变换将数据映射到新的坐标系中。在新的坐标系中,第一主成分捕获数据投影的最大方差,第二主成分捕获第二大方差,依此类推。主成分分析常用于减少数据集的维度,同时保留对方差贡献最大的特征。这是通过保留低阶主成分、忽略高阶主
- 《人工智能之高维数据降维算法:PCA与LDA深度剖析》
机器学习人工智能
在人工智能与机器学习蓬勃发展的当下,数据处理成为关键环节。高维数据在带来丰富信息的同时,也引入了计算复杂度高、过拟合风险增大以及数据稀疏性等难题。降维算法应运而生,它能将高维数据映射到低维空间,在减少维度的同时最大程度保留关键信息。主成分分析(PCA)与线性判别分析(LDA)作为两种常用的降维算法,在人工智能领域应用广泛。本文将深入探讨它们的原理。PCA:无监督的降维利器核心思想PCA基于最大方差
- 简化版奇异值分解(SVD)方法详解
DuHz
数理统计学知识机器学习人工智能算法信息与通信信号处理
简化版奇异值分解(SVD)方法详解奇异值分解(SVD)是一个强大的矩阵分解工具,广泛应用于数据降维、图像压缩、机器学习等领域。然而,对于大规模数据或高维矩阵,计算和存储的开销非常大,因此提出了多种简化版的SVD方法。这些简化版方法在保证解的精度的同时,能够显著减少计算量和内存占用。本文将详细介绍几种简化版SVD方法,包括经济型SVD、随机化SVD、增量SVD、分块SVD和偏最小二乘法(PLS),并
- 机器学习数学基础:21.特征值与特征向量
@心都
机器学习概率论人工智能
一、引言在现代科学与工程的众多领域中,线性代数扮演着举足轻重的角色。其中,特征值、特征向量以及相似对角化的概念和方法,不仅是线性代数理论体系的核心部分,更是解决实际问题的有力工具。无论是在物理学中描述系统的振动模式,还是在计算机科学里进行数据降维与图像处理,它们都发挥着关键作用。本教程将深入且全面地对这些内容展开讲解,旨在帮助读者透彻理解并熟练运用相关知识。二、基础知识准备(一)对角矩阵的高次幂计
- MATLAB主成分分析实战指南
Ready-Player
本文还有配套的精品资源,点击获取简介:主成分分析(PCA)是数据降维的一种技术,它通过转换原始数据到线性无关的主成分,降低数据复杂性,同时尽可能保留原始数据的方差信息。MATLAB提供强大的矩阵运算功能和内置函数,便于实现PCA。本文将详细介绍如何使用MATLAB进行PCA的每个步骤,包括数据预处理、计算协方差矩阵、提取特征向量和特征值、选择主成分、数据转换、结果可视化以及从主成分恢复原始数据。P
- 数据降维技术研究:Karhunen-Loève展开与快速傅里叶变换的理论基础及应用
人工智能机器学习python
在现代科学计算和数据分析领域,数据降维与压缩技术对于处理高维数据具有重要意义。本文主要探讨两种基础而重要的数学工具:Karhunen-Loève展开(KLE)和快速傅里叶变换(FFT)。通过分析这两种方法的理论基础和应用特点,阐述它们在数据降维中的优势和适用场景。Karhunen-Loève展开的理论与应用理论基础Karhunen-Loève展开是一种基于随机过程谱分解的降维方法。它通过构建最优正
- Python机器学习实战:主成分分析(PCA)的原理和实战操作
AI天才研究院
大数据AI人工智能AI大模型企业级应用开发实战计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Python机器学习实战:主成分分析(PCA)的原理和实战操作1.背景介绍1.1什么是主成分分析(PCA)?主成分分析(PrincipalComponentAnalysis,PCA)是一种常用的无监督学习算法,用于数据降维和特征提取。它通过线性变换将原始高维数据映射到低维空间,同时保留数据的主要特征和信息。PCA的目标是找到数据中最主要的方向(主成分),沿着这些方向对数据进行投影,从而实现降维。1
- pytorch实现主成分分析 (PCA):用于数据降维和特征提取
纠结哥_Shrek
pytorch人工智能python
使用PyTorch实现主成分分析(PCA)可以通过以下步骤进行:标准化数据:首先,需要对数据进行标准化处理,确保每个特征的均值为0,方差为1。计算协方差矩阵:计算数据的协方差矩阵,以捕捉特征之间的关系。特征值分解:对协方差矩阵进行特征值分解,获得主成分。选择主成分:根据特征值的大小选择前几个主成分,通常选择方差最大的主成分。转换数据:将数据投影到选定的主成分上,完成降维。例子代码:importto
- 降维算法:主成分分析
一个人在码代码的章鱼
数学建模机器学习概率论
主成分分析一种常用的数据分析技术,主要用于数据降维,在众多领域如统计学、机器学习、信号处理等都有广泛应用。主成分分析是一种通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量(即主成分)的方法。这些主成分按照方差从大到小排列,方差越大,包含的原始数据信息越多。通常会选取前几个方差较大的主成分,以达到在尽量保留原始数据信息的前提下降低数据维度的目的。它通过将多个指标转换为少数几个主成分,
- Python数据分析高频面试题及答案
闲人编程
程序员面试python数据分析面试题核心
目录1.基础知识2.数据处理3.数据可视化4.机器学习模型5.进阶问题6.数据清洗与预处理7.数据转换与操作8.时间序列分析9.高级数据分析技术10.数据降维与特征选择11.模型评估与优化12.数据操作与转换13.数据筛选与分析14.数据可视化与报告15.数据统计与分析16.高级数据处理以下是一些Python数据分析的高频核心面试题及其答案,涵盖了基础知识、数据1.基础知识问1:Python中列表
- ViewController添加button按钮解析。(翻译)
张亚雄
c
<div class="it610-blog-content-contain" style="font-size: 14px"></div>// ViewController.m
// Reservation software
//
// Created by 张亚雄 on 15/6/2.
- mongoDB 简单的增删改查
开窍的石头
mongodb
在上一篇文章中我们已经讲了mongodb怎么安装和数据库/表的创建。在这里我们讲mongoDB的数据库操作
在mongo中对于不存在的表当你用db.表名 他会自动统计
下边用到的user是表明,db代表的是数据库
添加(insert):
- log4j配置
0624chenhong
log4j
1) 新建java项目
2) 导入jar包,项目右击,properties—java build path—libraries—Add External jar,加入log4j.jar包。
3) 新建一个类com.hand.Log4jTest
package com.hand;
import org.apache.log4j.Logger;
public class
- 多点触摸(图片缩放为例)
不懂事的小屁孩
多点触摸
多点触摸的事件跟单点是大同小异的,上个图片缩放的代码,供大家参考一下
import android.app.Activity;
import android.os.Bundle;
import android.view.MotionEvent;
import android.view.View;
import android.view.View.OnTouchListener
- 有关浏览器窗口宽度高度几个值的解析
换个号韩国红果果
JavaScripthtml
1 元素的 offsetWidth 包括border padding content 整体的宽度。
clientWidth 只包括内容区 padding 不包括border。
clientLeft = offsetWidth -clientWidth 即这个元素border的值
offsetLeft 若无已定位的包裹元素
- 数据库产品巡礼:IBM DB2概览
蓝儿唯美
db2
IBM DB2是一个支持了NoSQL功能的关系数据库管理系统,其包含了对XML,图像存储和Java脚本对象表示(JSON)的支持。DB2可被各种类型的企 业使用,它提供了一个数据平台,同时支持事务和分析操作,通过提供持续的数据流来保持事务工作流和分析操作的高效性。 DB2支持的操作系统
DB2可应用于以下三个主要的平台:
工作站,DB2可在Linus、Unix、Windo
- java笔记5
a-john
java
控制执行流程:
1,true和false
利用条件表达式的真或假来决定执行路径。例:(a==b)。它利用条件操作符“==”来判断a值是否等于b值,返回true或false。java不允许我们将一个数字作为布尔值使用,虽然这在C和C++里是允许的。如果想在布尔测试中使用一个非布尔值,那么首先必须用一个条件表达式将其转化成布尔值,例如if(a!=0)。
2,if-els
- Web开发常用手册汇总
aijuans
PHP
一门技术,如果没有好的参考手册指导,很难普及大众。这其实就是为什么很多技术,非常好,却得不到普遍运用的原因。
正如我们学习一门技术,过程大概是这个样子:
①我们日常工作中,遇到了问题,困难。寻找解决方案,即寻找新的技术;
②为什么要学习这门技术?这门技术是不是很好的解决了我们遇到的难题,困惑。这个问题,非常重要,我们不是为了学习技术而学习技术,而是为了更好的处理我们遇到的问题,才需要学习新的
- 今天帮助人解决的一个sql问题
asialee
sql
今天有个人问了一个问题,如下:
type AD value
A  
- 意图对象传递数据
百合不是茶
android意图IntentBundle对象数据的传递
学习意图将数据传递给目标活动; 初学者需要好好研究的
1,将下面的代码添加到main.xml中
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http:/
- oracle查询锁表解锁语句
bijian1013
oracleobjectsessionkill
一.查询锁定的表
如下语句,都可以查询锁定的表
语句一:
select a.sid,
a.serial#,
p.spid,
c.object_name,
b.session_id,
b.oracle_username,
b.os_user_name
from v$process p, v$s
- mac osx 10.10 下安装 mysql 5.6 二进制文件[tar.gz]
征客丶
mysqlosx
场景:在 mac osx 10.10 下安装 mysql 5.6 的二进制文件。
环境:mac osx 10.10、mysql 5.6 的二进制文件
步骤:[所有目录请从根“/”目录开始取,以免层级弄错导致找不到目录]
1、下载 mysql 5.6 的二进制文件,下载目录下面称之为 mysql5.6SourceDir;
下载地址:http://dev.mysql.com/downl
- 分布式系统与框架
bit1129
分布式
RPC框架 Dubbo
什么是Dubbo
Dubbo是一个分布式服务框架,致力于提供高性能和透明化的RPC远程服务调用方案,以及SOA服务治理方案。其核心部分包含: 远程通讯: 提供对多种基于长连接的NIO框架抽象封装,包括多种线程模型,序列化,以及“请求-响应”模式的信息交换方式。 集群容错: 提供基于接
- 那些令人蛋痛的专业术语
白糖_
springWebSSOIOC
spring
【控制反转(IOC)/依赖注入(DI)】:
由容器控制程序之间的关系,而非传统实现中,由程序代码直接操控。这也就是所谓“控制反转”的概念所在:控制权由应用代码中转到了外部容器,控制权的转移,是所谓反转。
简单的说:对象的创建又容器(比如spring容器)来执行,程序里不直接new对象。
Web
【单点登录(SSO)】:SSO的定义是在多个应用系统中,用户
- 《给大忙人看的java8》摘抄
braveCS
java8
函数式接口:只包含一个抽象方法的接口
lambda表达式:是一段可以传递的代码
你最好将一个lambda表达式想象成一个函数,而不是一个对象,并记住它可以被转换为一个函数式接口。
事实上,函数式接口的转换是你在Java中使用lambda表达式能做的唯一一件事。
方法引用:又是要传递给其他代码的操作已经有实现的方法了,这时可以使
- 编程之美-计算字符串的相似度
bylijinnan
java算法编程之美
public class StringDistance {
/**
* 编程之美 计算字符串的相似度
* 我们定义一套操作方法来把两个不相同的字符串变得相同,具体的操作方法为:
* 1.修改一个字符(如把“a”替换为“b”);
* 2.增加一个字符(如把“abdd”变为“aebdd”);
* 3.删除一个字符(如把“travelling”变为“trav
- 上传、下载压缩图片
chengxuyuancsdn
下载
/**
*
* @param uploadImage --本地路径(tomacat路径)
* @param serverDir --服务器路径
* @param imageType --文件或图片类型
* 此方法可以上传文件或图片.txt,.jpg,.gif等
*/
public void upload(String uploadImage,Str
- bellman-ford(贝尔曼-福特)算法
comsci
算法F#
Bellman-Ford算法(根据发明者 Richard Bellman 和 Lester Ford 命名)是求解单源最短路径问题的一种算法。单源点的最短路径问题是指:给定一个加权有向图G和源点s,对于图G中的任意一点v,求从s到v的最短路径。有时候这种算法也被称为 Moore-Bellman-Ford 算法,因为 Edward F. Moore zu 也为这个算法的发展做出了贡献。
与迪科
- oracle ASM中ASM_POWER_LIMIT参数
daizj
ASMoracleASM_POWER_LIMIT磁盘平衡
ASM_POWER_LIMIT
该初始化参数用于指定ASM例程平衡磁盘所用的最大权值,其数值范围为0~11,默认值为1。该初始化参数是动态参数,可以使用ALTER SESSION或ALTER SYSTEM命令进行修改。示例如下:
SQL>ALTER SESSION SET Asm_power_limit=2;
- 高级排序:快速排序
dieslrae
快速排序
public void quickSort(int[] array){
this.quickSort(array, 0, array.length - 1);
}
public void quickSort(int[] array,int left,int right){
if(right - left <= 0
- C语言学习六指针_何谓变量的地址 一个指针变量到底占几个字节
dcj3sjt126com
C语言
# include <stdio.h>
int main(void)
{
/*
1、一个变量的地址只用第一个字节表示
2、虽然他只使用了第一个字节表示,但是他本身指针变量类型就可以确定出他指向的指针变量占几个字节了
3、他都只存了第一个字节地址,为什么只需要存一个字节的地址,却占了4个字节,虽然只有一个字节,
但是这些字节比较多,所以编号就比较大,
- phpize使用方法
dcj3sjt126com
PHP
phpize是用来扩展php扩展模块的,通过phpize可以建立php的外挂模块,下面介绍一个它的使用方法,需要的朋友可以参考下
安装(fastcgi模式)的时候,常常有这样一句命令:
代码如下:
/usr/local/webserver/php/bin/phpize
一、phpize是干嘛的?
phpize是什么?
phpize是用来扩展php扩展模块的,通过phpi
- Java虚拟机学习 - 对象引用强度
shuizhaosi888
JAVA虚拟机
本文原文链接:http://blog.csdn.net/java2000_wl/article/details/8090276 转载请注明出处!
无论是通过计数算法判断对象的引用数量,还是通过根搜索算法判断对象引用链是否可达,判定对象是否存活都与“引用”相关。
引用主要分为 :强引用(Strong Reference)、软引用(Soft Reference)、弱引用(Wea
- .NET Framework 3.5 Service Pack 1(完整软件包)下载地址
happyqing
.net下载framework
Microsoft .NET Framework 3.5 Service Pack 1(完整软件包)
http://www.microsoft.com/zh-cn/download/details.aspx?id=25150
Microsoft .NET Framework 3.5 Service Pack 1 是一个累积更新,包含很多基于 .NET Framewo
- JAVA定时器的使用
jingjing0907
javatimer线程定时器
1、在应用开发中,经常需要一些周期性的操作,比如每5分钟执行某一操作等。
对于这样的操作最方便、高效的实现方式就是使用java.util.Timer工具类。
privatejava.util.Timer timer;
timer = newTimer(true);
timer.schedule(
newjava.util.TimerTask() { public void run()
- Webbench
流浪鱼
webbench
首页下载地址 http://home.tiscali.cz/~cz210552/webbench.html
Webbench是知名的网站压力测试工具,它是由Lionbridge公司(http://www.lionbridge.com)开发。
Webbench能测试处在相同硬件上,不同服务的性能以及不同硬件上同一个服务的运行状况。webbench的标准测试可以向我们展示服务器的两项内容:每秒钟相
- 第11章 动画效果(中)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- windows下制作bat启动脚本.
sanyecao2314
javacmd脚本bat
java -classpath C:\dwjj\commons-dbcp.jar;C:\dwjj\commons-pool.jar;C:\dwjj\log4j-1.2.16.jar;C:\dwjj\poi-3.9-20121203.jar;C:\dwjj\sqljdbc4.jar;C:\dwjj\voucherimp.jar com.citsamex.core.startup.MainStart
- Java进行RSA加解密的例子
tomcat_oracle
java
加密是保证数据安全的手段之一。加密是将纯文本数据转换为难以理解的密文;解密是将密文转换回纯文本。 数据的加解密属于密码学的范畴。通常,加密和解密都需要使用一些秘密信息,这些秘密信息叫做密钥,将纯文本转为密文或者转回的时候都要用到这些密钥。 对称加密指的是发送者和接收者共用同一个密钥的加解密方法。 非对称加密(又称公钥加密)指的是需要一个私有密钥一个公开密钥,两个不同的密钥的
- Android_ViewStub
阿尔萨斯
ViewStub
public final class ViewStub extends View
java.lang.Object
android.view.View
android.view.ViewStub
类摘要: ViewStub 是一个隐藏的,不占用内存空间的视图对象,它可以在运行时延迟加载布局资源文件。当 ViewSt