- tenorflow
小鱼儿小于儿
tensorflow
tensorflow笔记3MNIST数据集共7万张图片,都是28*28像素点的手写数字图片。6万张用于训练,1万张用于测试。importtensorflowastfmnist=tf.keras.datasets.mnist(x_train,y_train),(x_test,y_test)=mnist.load_data()#直接送数据集中读取训练集和测试机x_train,x_test=x_trai
- 关于CNN
御风之星
1.理解卷积神经网络中的通道channel2.手把手教你用TensorFlow实现卷积神经网络3.tensorflow笔记:多层CNN代码分析
- 2021-07-02
fisher-nuc
tensorflow神经网络
基于TensorFlow搭建的几种经典的卷积神经网络注:本文是本人一门课程的期末大作业,在学习曹建老师(人工智能实践:TensorFlow笔记)的课程时记录的笔记。在进行整理后写的一篇小文章,具体详解可以在B站或者MOOC上搜索相关课程。课程网站:https://www.icourse163.org/learn/PKU-1002536002?tid=1003797005#/learn/announ
- (一)tensorflow笔记:Tensor数据类型
阿松丶
TensorFlow详细笔记tensorflowpython深度学习
常见的数据类型载体listnp.arraytf.tensorlist:可以存储不同数据类型,缺点不适合存储较大的数据,如图片np.array:解决同类型大数据数据的载体,方便数据运算,缺点是在深度学习之前就设计好的,不支持GPUtf.tensor:更适合深度学习,支持GPUTensor是什么scalar:1.1vector:[1.1],[1.1,2.2,……]matrix:[[1,2,3,],[4
- tensorflow笔记(编程理论部分)
orangehsc
tensorflowpython矩阵算法
TensorFlow笔记(编程理论部分)注:该笔记是阅读TensorFlow深度学习算法原理与编程实战第三章后做的框架梳理和部分个人见解。Tensorflow之名由Tensor和Flow组成,Tensor意为张量,可以理解为数组;Flow意为流动,指张量数据沿着边在不同的节点间流动并发生转化。1.1计算图TensorFlow中的各种操作,如加权求和,激活函数等,都被编排成一个图,称为计算图。计算图
- tensorflow笔记
_夏雨潇潇
#tensorflow笔记一个小例子#用numpy构造数据x_data=np.random.rand(100).astype(np.float32)y_data=x_data*0.1+0.3#tf.Variable定义了一个变量,random_uniform表示用随机的方式生成变量的初始值#1表示这个变量是一维的,变量的初始范围是-1到1Weights=tf.Variable(tf.random_
- TensorFlow笔记之卷积神经网络
Mr_Stutter
Python机器学习cnntensorflow深度学习
文章目录前言一、卷积神经网络CNN二、Tensorflow1.x1.加载数据集2.数据处理3.定义模型4.训练模型5.结果可视化二、Tensorflow2.x1.加载数据集2.数据处理3.定义模型4.训练模型5.结果可视化总结前言记录在tf1.x与tf2.x中使用卷积神经网络完成CIFAR-10数据集识别多分类任务,并进行断点续训。一、卷积神经网络CNN1、全连接网络:参数增多,速度减慢,过拟合2
- tensorflow笔记----3---ANN对mnist数据集分类
骑着蜗牛逛世界
tensorflow
tensorfllow实现两层MLP对mnist分类,第一层256个神经元,第二层128个神经元,输入784,输出10分类#!/usr/bin/python#-*-coding:utf-8-*-__author__="chunming"importtensorflowastffromtensorflow.examples.tutorials.mnistimportinput_datamnist=i
- Tensorflow笔记 3.3 反向传播
CCWUCMCTS
概念反向传播训练模型参数,在所有参数上使用梯度下降,使NN模型在训练数据上的损失函数最小。损失函数预测值与已知答案的差距。均方误差loss=tf.reduce_mean(tf.square(y_-y))反向传播的训练方法三种方式,见代码。学习率参数更新幅度。实战loss#coding:utf-8#0导入模块,生成模拟数据集。importtensorflowastfimportnumpyasnpBA
- DL with python(16)——tensorflow实现InceptionNet(GoogLeNet)
佟湘玉滴玉
Python深度学习深度学习python
本文涉及到的是中国大学慕课《人工智能实践:Tensorflow笔记》第五讲第14节的内容,对tensorflow环境下经典卷积神经网络的搭建进行介绍,其基础是DLwithpython(14)——tensorflow实现CNN的“八股”中的代码,将其中第三步的代码替换为本文中的代码均可直接运行,其他部分无需改变。经典的卷积神经网络有以下几种,这里介绍结构较为复杂的InceptionNet,其实现的方
- [tensorflow笔记]-tensorflow实现带mask的reduce_mean
黄然大悟
Tensorflow&Kerastensorflowreduce_meanmask平均
在使用tensorflow处理一些tensor时,有时需要对一个tensor取平均,可以使用tf.reduce_mean操作,但是这个没法处理带有mask的tensor数据,本文主要就是利用tensorflow的基本操作实现带mask的平均。tf.reduce_mean比如我们的数据是3维tensor,shape=(B,N,H),B表示batch_size、N表示最大长度、H表示向量维度,这样的3
- 学习tensorflow笔记1、梯度计算
weixin_51298826
tensorflow学习笔记tensorflowpython深度学习
1、梯度计算学习北京大学的mooc,记录笔记代码块:生成一个变量w初值为5,设定为可训练学习率lr大小会影响梯度下降的速度和步幅迭代次数epochimporttensorflowastfimportmatplotlib.pyplotaspltw=tf.Variable(tf.constant(5,dtype=tf.float32))lr=0.9epoch=40plt_show=[]forepoch
- Tensorflow笔记——tf.layers.dense的用法
·城府、
深度学习神经网络
1.tf.layers.dense的用法dense:相当于一个全连接层函数解释如下:tf.layers.dense(inputs,units,activation=None,use_bias=True,kernel_initializer=None,bias_initializer=tf.zeros_initializer(),kernel_regularizer=None,bias_regula
- TensorFlow笔记之神经网络完成多分类任务
Mr_Stutter
Python机器学习tensorflow神经网络分类
文章目录前言一、数据集调用二、Tensorflow1.x1.单隐藏层2.模型保存与调用三、Tensorflow2.x1.全连接层类2.keras建模总结前言对TensorFlow笔记之单神经元完成多分类任务进行修改,在tf1.x与tf2.x中使用神经网络完成手写体数字识别多分类任务。一、数据集调用数据集调用与预处理和上一篇完全相同#数据集调用,在tensorflow2.x中调用数据集importt
- TensorFlow2安装(超详细步骤-人工智能实践)
不唐
Python深度学习TensorFlowtensorflow深度学习python
TensorFlow2安装教程1前言1.1版本记录1.2工具简介2详细步骤及安装语句2.1安装Anaconda2.2TensoFlow安装2.3验证是否成功2.4PyCharm下载与安装2.5PyCharm环境配置2.5.1不唐初尝试1前言点滴进步,加油!最近在MOOC看北京大学的曹健老师的《人工智能实践:Tensorflow笔记》课程。其中第一章的第8节提到了详细的TensorFlow安装过程。
- tensorflow笔记(十九)——错误集锦
starxhong
tensorflowtensorflow深度学习错误
错误及应对方案1,问题:训练正常,预测和评估的时候报OOM:办法:减少预测和训练的batchsize,或者减少网络参数。参考:ResourceExhaustedError(seeabovefortraceback):OOMwhenallocatingtensorofshape[7744,512]#33932,问题:从dataset打印数据,报错OP_REQUIRESfailedatexample_
- InceptionNet与ResNet
九思Atopos
tensorflow笔记深度学习pythontensorflow
以下代码图片思路来源:北京大学Tensorflow笔记嗯,最近学了一下神经网络,并没有很难,主要是把代码背下来,然后掌握Tensorflow是怎么搭建网络的,Tensorflow是比pytorch好用的,我直接抄的代码里面,训练还要自己写循环,,而tensonflow直接调用fit函数即可和老师做了一下InceptionNet还有ResNet,ResNet主要是有一条path,由于维度不同需要使用
- TensorFlow笔记之多元线性回归
Mr_Stutter
Python机器学习tensorflow线性回归python
文章目录前言一、数据处理二、TensorFlow1.x1.定义模型2.训练模型3.结果可视化4.模型预测5.TensorBoard可视化三、TensorFlow2.x1.定义模型2.训练模型3.结果可视化4.模型预测总结前言记录使用TensorFlow1.x和TensorFlow2.x完成多元线性回归的过程。一、数据处理在此使用波士顿房价数据集,包含506个样本,输入为12个房屋信息特征,输出为房
- TensorFlow笔记之单变量线性回归
Mr_Stutter
Python机器学习tensorflow线性回归
文章目录前言一、数据集生成二、TensorFlow1.x1.定义模型2.训练模型3.模型预测三、TensorFlow2.x1.定义模型2.训练模型3.模型预测总结前言记录使用TensorFlow1.x和TensorFlow2.x完成单变量线性回归的过程。一、数据集生成生成带标准正态分布噪声的y=2x+1数据集importnumpyasnpimportmatplotlib.pyplotasplt#数
- Tensorflow笔记之【神经网络的初步搭建】
不理不理不理左卫门
机器学习Tensorflow
一、基本概念基于Tensorflow的神经网络用张量表示数据,用计算图搭建神经网络,用会话执行计算图,优化线上的权重,得到模型。张量——多维数组参数——神经元线上的权重计算图——搭建神经网络的计算过程,只搭建不计算会话——执行计算图中的节点运算例:矩阵乘法importtensorflowastf#引入模块x=tf.constant([[1.0,2.0]])#定义一个2阶1x2张量等于[[1.0,2
- TensorFlow笔记之单神经元完成多分类任务
Mr_Stutter
Python机器学习tensorflow分类
文章目录前言一、逻辑回归1.二分类问题2.多分类问题二、数据集调用三、TensorFlow1.x1.定义模型2.训练模型3.结果可视化四、TensorFlow2.x1.定义模型2.训练模型3.结果可视化总结前言记录分别在TensorFlow1.x与TensorFlow2.x中使用单神经元完成MNIST手写数字识别的过程。一、逻辑回归将回归值映射为各分类的概率1.二分类问题1.sigmod函数:y=
- 1TensorFlow笔记——基础概念简介&Python简明教程
weixin_45165961
pythontensorflow
0.1人工智能让机器看起来跟人一样,目前处于弱人工智能NarrowAI,距离强人工智能GeneralAI还有很大一段路要走。0.1.1机器学习让计算机自动学习,获得规律(模型),用新规律预测。0.1.2分类有监督学习:给带结果的数据进行训练,线性回归、逻辑回归、支持向量机、随机森林等。无监督学习:给数据,找规律进行分类,常见的无监督学习算法有自编码器、生成对抗网络等。半监督学习:给一小部分有标注数
- 人工智能学习第一篇(tensorflow笔记)
& Pumbaa
tensorflow
本文是在学习北大课程“人工智能实践:tensorflow笔记”的基础上,自己做的笔记,用于温故知新。张量(Tensor):多维数组(列表)阶:张量的维数(从0开始)张量可以表示0阶到n阶数组(列表)eg1:importtensorflowastfa=tf.constant([1,5],dtype=tf.int64)print(a)print(a.dtype)print(a.shape)结果:tf.
- 神经网络学习笔记——鸢尾花分类
XL_0502
神经网络学习笔记神经网络tensorflow
TensorFlow笔记——鸢尾花分类代码笔记记录实验流程和代码功能,附上关于所涉及到的tensorflow库中函数的解释实验流程数据集读入数据集乱序生成训练集和测试集(即x_train/y_train)数据类型转换配成(输入特征,标签)对,每次读入一小撮(batch)搭建网络定义神经网路中所有可训练参数参数优化嵌套循环迭代,with结构更新参数,显示当前loss测试效果计算当前参数前向传播后的准
- 用tensorflow搭建全连接神经网络实现mnist数据集的识别
humuhumunukunukuapua
爱好machinelearningmnisttensorflow
说明:本代码来自于北京大学曹健老师的MOOC人工智能实践:Tensorflow笔记第五讲I前向传播网络搭建在mnist_forward.py中搭建两层全连接网络,这里面就是定义层数,节点数,激活函数这些。输入节点数目就是mnist数据集的图片28*28大小,用784行的向量作为输入。第一层y1=relu(x*w1+b1)其中y1为500行的向量。那么w1里面就有784*500个变量啦~~b1是50
- TensorFlow笔记_05——神经网络八股功能拓展
要什么自行车儿
#TensorFlow2.0tensorflow神经网络深度学习
目录5.神经网络八股功能拓展5.1自制数据集,解决本领域应用5.2数据增强,扩充数据集5.3断点续训,存取模型5.3.1读取保存模型5.4参数提取,把参数存入文本5.5acc/loss可视化,查看训练效果5.6应用程序,给图实物(手写数字识别)上一篇:TensorFlow笔记_04——八股搭建神经网络下一篇:敬请期待5.神经网络八股功能拓展5.1自制数据集,解决本领域应用defgenerateds
- TensorFlow笔记之:填充使用tf.sequence_mask()函数详细说明和应用场景
模糊包
TensorFlow
tf.sequence_mask()函数这个函数目前我主要用于数据填充时候使用。文章目录tf.sequence_mask()函数1.函数介绍2.参数解释要点解释:3.函数举例4.注意事项和应用场景1.函数介绍这个是官方定义,耐心看完解释再看后面的例子,你会一下就懂了。#函数定义sequence_mask(lengths,maxlen=None,dtype=tf.bool,name=None)#返回
- 小白笔记:深度学习之Tensorflow笔记(七:神经网络优化过程)
my小马
tensorflow深度学习神经网络tensorflow深度学习
激活函数激活函数是用来加入非线性因素的,因为线性模型的表达能力不够。引入非线性激活函数,可使深层神经网络的表达能力更加强大。简化模型:MP模型:优秀的激活函数:•非线性:激活函数非线性时,多层神经网络可逼近所有函数•可微性:优化器大多用梯度下降更新参数•单调性:当激活函数是单调的,能保证单层网络的损失函数是凸函数•近似恒等性:f(x)≈x当参数初始化为随机小值时,神经网络更稳定激活函数输出值的范围
- 人工智能实践:Tensorflow笔记 Class 2:神经网络优化
By4te
机器学习Pythontensorflow人工智能神经网络
目录2.1基础知识2.2复杂度学习率1.复杂度2.学习率2.3激活函数1.sigmoid函数2.tanh函数3.relu函数4.leaky-relu函数2.4损失函数1.均方误差2.自定义损失函数3.交叉熵损失函数4.softmax与交叉熵结合2.5缓解过拟合正则化2.6优化器1.SGD2.SGDM3.Adagrad4.RMSProp5.Adam2.1基础知识2.2复杂度学习率1.复杂度2.学习率
- 《人工智能实践:Tensorflow笔记》听课笔记24_7.1卷积神经网络
RENeast
人工智能人工智能
附:课程链接第七讲.卷积神经网络7.1卷积神经网络由于个人使用Win7系统,并未完全按照课程所讲,以下记录的也基本是我的结合课程做的Windows系统+PyCharm操作。且本人有python基础,故一些操作可能简略。并未完全按照网课。记住编写代码时,除注释内容外,字符均使用英文格式。一、回顾及展开前两讲中我们利用全连接网络实现了对mnist数据集的训练,我们已学会使用数据集训练模型,并让训练好的
- 继之前的线程循环加到窗口中运行
3213213333332132
javathreadJFrameJPanel
之前写了有关java线程的循环执行和结束,因为想制作成exe文件,想把执行的效果加到窗口上,所以就结合了JFrame和JPanel写了这个程序,这里直接贴出代码,在窗口上运行的效果下面有附图。
package thread;
import java.awt.Graphics;
import java.text.SimpleDateFormat;
import java.util
- linux 常用命令
BlueSkator
linux命令
1.grep
相信这个命令可以说是大家最常用的命令之一了。尤其是查询生产环境的日志,这个命令绝对是必不可少的。
但之前总是习惯于使用 (grep -n 关键字 文件名 )查出关键字以及该关键字所在的行数,然后再用 (sed -n '100,200p' 文件名),去查出该关键字之后的日志内容。
但其实还有更简便的办法,就是用(grep -B n、-A n、-C n 关键
- php heredoc原文档和nowdoc语法
dcj3sjt126com
PHPheredocnowdoc
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Current To-Do List</title>
</head>
<body>
<?
- overflow的属性
周华华
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- 《我所了解的Java》——总体目录
g21121
java
准备用一年左右时间写一个系列的文章《我所了解的Java》,目录及内容会不断完善及调整。
在编写相关内容时难免出现笔误、代码无法执行、名词理解错误等,请大家及时指出,我会第一时间更正。
&n
- [简单]docx4j常用方法小结
53873039oycg
docx
本代码基于docx4j-3.2.0,在office word 2007上测试通过。代码如下:
import java.io.File;
import java.io.FileInputStream;
import ja
- Spring配置学习
云端月影
spring配置
首先来看一个标准的Spring配置文件 applicationContext.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi=&q
- Java新手入门的30个基本概念三
aijuans
java新手java 入门
17.Java中的每一个类都是从Object类扩展而来的。 18.object类中的equal和toString方法。 equal用于测试一个对象是否同另一个对象相等。 toString返回一个代表该对象的字符串,几乎每一个类都会重载该方法,以便返回当前状态的正确表示.(toString 方法是一个很重要的方法) 19.通用编程:任何类类型的所有值都可以同object类性的变量来代替。
- 《2008 IBM Rational 软件开发高峰论坛会议》小记
antonyup_2006
软件测试敏捷开发项目管理IBM活动
我一直想写些总结,用于交流和备忘,然都没提笔,今以一篇参加活动的感受小记开个头,呵呵!
其实参加《2008 IBM Rational 软件开发高峰论坛会议》是9月4号,那天刚好调休.但接着项目颇为忙,所以今天在中秋佳节的假期里整理了下.
参加这次活动是一个朋友给的一个邀请书,才知道有这样的一个活动,虽然现在项目暂时没用到IBM的解决方案,但觉的参与这样一个活动可以拓宽下视野和相关知识.
- PL/SQL的过程编程,异常,声明变量,PL/SQL块
百合不是茶
PL/SQL的过程编程异常PL/SQL块声明变量
PL/SQL;
过程;
符号;
变量;
PL/SQL块;
输出;
异常;
PL/SQL 是过程语言(Procedural Language)与结构化查询语言(SQL)结合而成的编程语言PL/SQL 是对 SQL 的扩展,sql的执行时每次都要写操作
- Mockito(三)--完整功能介绍
bijian1013
持续集成mockito单元测试
mockito官网:http://code.google.com/p/mockito/,打开documentation可以看到官方最新的文档资料。
一.使用mockito验证行为
//首先要import Mockito
import static org.mockito.Mockito.*;
//mo
- 精通Oracle10编程SQL(8)使用复合数据类型
bijian1013
oracle数据库plsql
/*
*使用复合数据类型
*/
--PL/SQL记录
--定义PL/SQL记录
--自定义PL/SQL记录
DECLARE
TYPE emp_record_type IS RECORD(
name emp.ename%TYPE,
salary emp.sal%TYPE,
dno emp.deptno%TYPE
);
emp_
- 【Linux常用命令一】grep命令
bit1129
Linux常用命令
grep命令格式
grep [option] pattern [file-list]
grep命令用于在指定的文件(一个或者多个,file-list)中查找包含模式串(pattern)的行,[option]用于控制grep命令的查找方式。
pattern可以是普通字符串,也可以是正则表达式,当查找的字符串包含正则表达式字符或者特
- mybatis3入门学习笔记
白糖_
sqlibatisqqjdbc配置管理
MyBatis 的前身就是iBatis,是一个数据持久层(ORM)框架。 MyBatis 是支持普通 SQL 查询,存储过程和高级映射的优秀持久层框架。MyBatis对JDBC进行了一次很浅的封装。
以前也学过iBatis,因为MyBatis是iBatis的升级版本,最初以为改动应该不大,实际结果是MyBatis对配置文件进行了一些大的改动,使整个框架更加方便人性化。
- Linux 命令神器:lsof 入门
ronin47
lsof
lsof是系统管理/安全的尤伯工具。我大多数时候用它来从系统获得与网络连接相关的信息,但那只是这个强大而又鲜为人知的应用的第一步。将这个工具称之为lsof真实名副其实,因为它是指“列出打开文件(lists openfiles)”。而有一点要切记,在Unix中一切(包括网络套接口)都是文件。
有趣的是,lsof也是有着最多
- java实现两个大数相加,可能存在溢出。
bylijinnan
java实现
import java.math.BigInteger;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
public class BigIntegerAddition {
/**
* 题目:java实现两个大数相加,可能存在溢出。
* 如123456789 + 987654321
- Kettle学习资料分享,附大神用Kettle的一套流程完成对整个数据库迁移方法
Kai_Ge
Kettle
Kettle学习资料分享
Kettle 3.2 使用说明书
目录
概述..........................................................................................................................................7
1.Kettle 资源库管
- [货币与金融]钢之炼金术士
comsci
金融
自古以来,都有一些人在从事炼金术的工作.........但是很少有成功的
那么随着人类在理论物理和工程物理上面取得的一些突破性进展......
炼金术这个古老
- Toast原来也可以多样化
dai_lm
androidtoast
Style 1: 默认
Toast def = Toast.makeText(this, "default", Toast.LENGTH_SHORT);
def.show();
Style 2: 顶部显示
Toast top = Toast.makeText(this, "top", Toast.LENGTH_SHORT);
t
- java数据计算的几种解决方法3
datamachine
javahadoopibatisr-languer
4、iBatis
简单敏捷因此强大的数据计算层。和Hibernate不同,它鼓励写SQL,所以学习成本最低。同时它用最小的代价实现了计算脚本和JAVA代码的解耦,只用20%的代价就实现了hibernate 80%的功能,没实现的20%是计算脚本和数据库的解耦。
复杂计算环境是它的弱项,比如:分布式计算、复杂计算、非数据
- 向网页中插入透明Flash的方法和技巧
dcj3sjt126com
htmlWebFlash
将
Flash 作品插入网页的时候,我们有时候会需要将它设为透明,有时候我们需要在Flash的背面插入一些漂亮的图片,搭配出漂亮的效果……下面我们介绍一些将Flash插入网页中的一些透明的设置技巧。
一、Swf透明、无坐标控制 首先教大家最简单的插入Flash的代码,透明,无坐标控制: 注意wmode="transparent"是控制Flash是否透明
- ios UICollectionView的使用
dcj3sjt126com
UICollectionView的使用有两种方法,一种是继承UICollectionViewController,这个Controller会自带一个UICollectionView;另外一种是作为一个视图放在普通的UIViewController里面。
个人更喜欢第二种。下面采用第二种方式简单介绍一下UICollectionView的使用。
1.UIViewController实现委托,代码如
- Eos平台java公共逻辑
蕃薯耀
Eos平台java公共逻辑Eos平台java公共逻辑
Eos平台java公共逻辑
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月1日 17:20:4
- SpringMVC4零配置--Web上下文配置【MvcConfig】
hanqunfeng
springmvc4
与SpringSecurity的配置类似,spring同样为我们提供了一个实现类WebMvcConfigurationSupport和一个注解@EnableWebMvc以帮助我们减少bean的声明。
applicationContext-MvcConfig.xml
<!-- 启用注解,并定义组件查找规则 ,mvc层只负责扫描@Controller -->
<
- 解决ie和其他浏览器poi下载excel文件名乱码
jackyrong
Excel
使用poi,做传统的excel导出,然后想在浏览器中,让用户选择另存为,保存用户下载的xls文件,这个时候,可能的是在ie下出现乱码(ie,9,10,11),但在firefox,chrome下没乱码,
因此必须综合判断,编写一个工具类:
/**
*
* @Title: pro
- 挥洒泪水的青春
lampcy
编程生活程序员
2015年2月28日,我辞职了,离开了相处一年的触控,转过身--挥洒掉泪水,毅然来到了兄弟连,背负着许多的不解、质疑——”你一个零基础、脑子又不聪明的人,还敢跨行业,选择Unity3D?“,”真是不自量力••••••“,”真是初生牛犊不怕虎•••••“,••••••我只是淡淡一笑,拎着行李----坐上了通向挥洒泪水的青春之地——兄弟连!
这就是我青春的分割线,不后悔,只会去用泪水浇灌——已经来到
- 稳增长之中国股市两点意见-----严控做空,建立涨跌停版停牌重组机制
nannan408
对于股市,我们国家的监管还是有点拼的,但始终拼不过飞流直下的恐慌,为什么呢?
笔者首先支持股市的监管。对于股市越管越荡的现象,笔者认为首先是做空力量超过了股市自身的升力,并且对于跌停停牌重组的快速反应还没建立好,上市公司对于股价下跌没有很好的利好支撑。
我们来看美国和香港是怎么应对股灾的。美国是靠禁止重要股票做空,在
- 动态设置iframe高度(iframe高度自适应)
Rainbow702
JavaScriptiframecontentDocument高度自适应局部刷新
如果需要对画面中的部分区域作局部刷新,大家可能都会想到使用ajax。
但有些情况下,须使用在页面中嵌入一个iframe来作局部刷新。
对于使用iframe的情况,发现有一个问题,就是iframe中的页面的高度可能会很高,但是外面页面并不会被iframe内部页面给撑开,如下面的结构:
<div id="content">
<div id=&quo
- 用Rapael做图表
tntxia
rap
function drawReport(paper,attr,data){
var width = attr.width;
var height = attr.height;
var max = 0;
&nbs
- HTML5 bootstrap2网页兼容(支持IE10以下)
xiaoluode
html5bootstrap
<!DOCTYPE html>
<html>
<head lang="zh-CN">
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">