量子力学中exp(A+B)=exp(A)exp(B)exp(-[A,B]/2)是恒等式吗?

量子力学算符有这么一个表达式 e A + B = e A e B e − 1 2 [ A , B ] e^{A+B}=e^Ae^Be^{-\frac{1}{2}[A,B]} eA+B=eAeBe21[A,B],实际上这只是一个近似表达式,它只在特殊情况下才是恒等式!这个特殊情况叫作disentangling theorem,当 [ A ^ , B ^ ] ≠ 0 [\hat{A}, \hat{B}]\neq0 [A^,B^]̸=0 [ A ^ , [ A ^ , B ^ ] ] = [ B ^ , [ A ^ , B ^ ] ] = 0 [\hat{A},[\hat{A},\hat{B}]]=[\hat{B},[\hat{A},\hat{B}]]=0 [A^,[A^,B^]]=[B^,[A^,B^]]=0才成立!更一般的情况在下面讨论:

Baker–Campbell–Hausdorff (BCH) formula:

Z = log ⁡ ( e X e Y ) = X + Y + ∑ m = 2 ∞ Z m ( X , Y ) . Z = \log(e^Xe^Y) = X + Y +\sum_{m=2}^\infty Z_m(X, Y). Z=log(eXeY)=X+Y+m=2Zm(X,Y).其中 Z m ( X , Y ) Z_m(X, Y) Zm(X,Y)是一个非对易算符 X , Y X,Y X,Y构成的homogeneous Lie polynomial。前几项表达式为 Z 2 = 1 2 [ X , Y ] ,   Z 3 = 1 12 [ X , [ X , Y ] ] − 1 12 [ Y , [ X , Y ] ] ,   Z 4 = 1 24 [ X , [ Y , [ Y , X ] ] ] . Z_2 =\frac{1}{2}[X, Y ],\ Z_3=\frac{1}{12}[X, [X, Y ]] −\frac{1}{12}[Y, [X, Y ]],\ Z_4=\frac{1}{24}[X, [Y,[Y, X]]]. Z2=21[X,Y], Z3=121[X,[X,Y]]121[Y,[X,Y]], Z4=241[X,[Y,[Y,X]]].或者写到更高阶:
量子力学中exp(A+B)=exp(A)exp(B)exp(-[A,B]/2)是恒等式吗?_第1张图片

The Zassenhaus formula:

Zassenhaus在一篇未发表的文章里推导了一个公式,它可以看成是BCH formula的对偶公式:
e t ( X + Y ) = e t X   e t Y   e − t 2 2 [ X , Y ]   e t 3 6 ( 2 [ Y , [ X , Y ] ] + [ X , [ X , Y ] ] )   e − t 4 24 ( [ [ [ X , Y ] , X ] , X ] + 3 [ [ [ X , Y ] , X ] , Y ] + 3 [ [ [ X , Y ] , Y ] , Y ] ) ⋯ e^{t(X+Y)}=e^{tX}~e^{tY}~e^{-{\frac {t^{2}}{2}}[X,Y]}~e^{{\frac {t^{3}}{6}}(2[Y,[X,Y]]+[X,[X,Y]])}~e^{{\frac {-t^{4}}{24}}([[[X,Y],X],X]+3[[[X,Y],X],Y]+3[[[X,Y],Y],Y])}\cdots et(X+Y)=etX etY e2t2[X,Y] e6t3(2[Y,[X,Y]]+[X,[X,Y]]) e24t4([[[X,Y],X],X]+3[[[X,Y],X],Y]+3[[[X,Y],Y],Y])这个公式的意义是,将两个不对易算符求和的指数改写成无穷多项算符指数形式的乘积,这种改写形式广泛应用于统计力学,多体理论,量子光学,路径积分等。文献[2]给出了计算高阶项的递归方法。

特别的,如果[X,Y]是李群的central,也就是它和任意群元都对易,在这里是和 X , Y X,Y X,Y对易,则我们有 e X e Y = e X + Y + 1 2 [ X , Y ] . e^X e^Y= e^{X+Y +\frac{1}{2}[X,Y]}. eXeY=eX+Y+21[X,Y].

量子力学应用示例

在量子光学中,optical phase space里一个mode的Displacement operator定义为: D ^ ( α ) = e v a ^ † − v ∗ a ^ = e v a ^ † e − v ∗ a ^ e − ∣ v ∣ 2 / 2 , \hat{D}(\alpha)=e^{v\hat{a}^\dagger - v^*\hat{a}} = e^{v\hat{a}^\dagger} e^{-v^*\hat{a}} e^{-|v|^{2}/2}, D^(α)=eva^va^=eva^eva^ev2/2,其中 a ^ \hat{a} a^ a ^ † \hat{a}^{\dagger} a^是湮灭和产生算符,且满足 [ a ^ , a ^ † ] = I [\hat{a},\hat{a}^{\dagger}]=I [a^,a^]=I(是这个群的central), v v v是optical phase space位移大小的度量。最后一个等式不是近似而是精确的,用到了Zassenhaus formula的特殊情况。

The name of the displacement operator is derived from its ability to displace a localized state in phase space by a magnitude α \alpha α. It may also act on the vacuum state by displacing it into a coherent state. Specifically, D ^ ( α ) ∣ 0 ⟩ = ∣ α ⟩ \hat{D}(\alpha )|0\rangle =|\alpha \rangle D^(α)0=α where ∣ α ⟩ |\alpha \rangle α is a coherent state, which is an eigenstate of the annihilation (lowering) operator.

【Ref】
1.https://en.wikipedia.org/wiki/Baker–Campbell–Hausdorff_formula
2.(arxiv) Efficient computation of the Zassenhaus formula https://arxiv.org/pdf/1204.0389.pdf

你可能感兴趣的:(物理学)