- Objective-C实现2 个数字之间的算术几何平均值算法(附完整源码)
源代码大师
objective-c算法开发语言
Objective-C实现2个数字之间的算术几何平均值算法算术几何平均值(Arithmetic-GeometricMean,AGM)是一个在数值分析中非常重要的概念,尤其是在计算平方根和其他数学运算时。算术几何平均值是两个正数的算术平均值和几何平均值的迭代过程,直到两个值收敛为止。以下是一个用Objective-C实现的算术几何平均值算法的完整源码:#importdoublearithmeticG
- 云计算在可视化非线性偏微分方程动力学中的应用:拟线性和半线性示例-AI云计算数值分析和代码验证
亚图跨际
AI云计算人工智能
“拟线性”和“半线性”代表了非线性偏微分方程(PDEs)这一大类中的重要分类。其区别主要在于非线性的表现形式,特别是与未知函数的最高阶导数之间的关系。在偏微分方程的研究中,将其分为线性、半线性、拟线性和完全非线性至关重要,因为用于分析和求解它们(例如,解的存在性、唯一性、正则性、数值方法)的数学技术根据其线性性质而显著不同。非线性偏微分方程通常比线性偏微分方程更难求解和分析,即使在非线性类别中,由
- 模拟多维物理过程与基于云的数值分析-AI云计算数值分析和代码验证
亚图跨际
AI人工智能云计算
高维输运与扩散方程,涵盖了严格的扩散极限、多维扩散理论、先进的数值和基于粒子的模拟方法,以及分数阶/电报式推广,为广泛的科学和工程领域中复杂输运现象的建模、分析和模拟提供了强大的工具。高维输运和扩散方程涵盖了输运方程的严格扩散极限、结合随机和偏微分方程工具的多维扩散理论、先进的数值和基于粒子的模拟方法、分数阶和电报式输运的推广,以及在地球物理和工程系统中的应用。这些框架为建模、分析和模拟许多科学和
- 云驱动的扩散现象可视化-AI云计算数值分析和代码验证
亚图跨际
AI人工智能
扩散是一种基本的被动传输过程,其中粒子由于随机分子运动而从较高浓度移动到较低浓度,影响从生物呼吸到工业半导体掺杂的各种现象。扩散是粒子从高浓度区域向低浓度区域自发移动的过程,由气体或液体中分子的随机运动和碰撞驱动。这是一种不需外部能量输入的被动传输过程。☁️AI云计算数值分析和代码验证影响扩散的重要因素包括:浓度梯度:浓度差异越大,扩散速率越快。当接近平衡时,扩散会减慢。分子质量:较轻的分子比较重
- 通过交互式网页探索传输现象-AI云计算数值分析和代码验证
亚图跨际
AI人工智能云计算
传输过程涉及质量、动量和能量等物理量在各种系统中的基本运动和转移,主要分为动量传输、热量传输和质量传输,在工程、环境科学、生物学和物流等领域至关重要。传输过程是指物理量(如质量、动量和能量)在物理、化学、生物或工程系统中的移动和传递。这些过程是各种科学和工程领域的基础,主要分为三类:☁️AI云计算数值分析和代码验证传输过程的类型动量传输这涉及动量在运动介质(例如流体)中的传递。它对流体流动、沉降、
- 认识Jacobian
一碗姜汤
统计学习线性代数矩阵
Jacobian(雅可比矩阵)是数学中用于描述多元函数在某一点处导数的重要概念,广泛应用于微积分、微分几何、数值分析等领域。以下从定义、数学表达、几何意义、应用场景等方面详细解析:一、定义与数学表达1.基本定义若有一个从欧式空间Rn\mathbb{R}^nRn到Rm\mathbb{R}^mRm的多元函数:f:Rn→Rmf:\mathbb{R}^n\to\mathbb{R}^mf:Rn→Rm,其分量
- 理解与建模弹性膜-AI云计算数值分析和代码验证
亚图跨际
AI人工智能云计算
弹性膜在连接生物学理解和工程创新方面至关重要,因为它们能够模拟软组织力学、实现先进的细胞培养系统和促进柔性设备,广泛应用于软组织生物力学、细胞培养、生物膜建模和生物医学工程等领域。☁️AI云计算数值分析和代码验证弹性膜在连接生物学理解和工程创新方面至关重要,其应用范围从模拟软组织力学到实现先进的细胞培养系统和柔性设备。它们的价值在于能够复制复杂的机械行为,并为生物医学和技术进步提供功能平台。以下是
- 材料力学数值方法:相场法:数值分析方法_2024-08-05_09-54-55.Tex
chenjj4003
材料力学python算法开发语言人工智能机器学习
材料力学数值方法:相场法:数值分析方法绪论相场法的起源与发展相场法,作为材料科学中一种重要的数值分析方法,其起源可以追溯到20世纪80年代。最初,该方法被提出用于描述和模拟材料中的相变过程,特别是固态相变。相场法的核心在于将相变过程视为一个连续的场,通过引入一个或多个相场变量来描述材料中不同相的分布和演化。这种方法的优势在于能够处理复杂的几何形状和多相系统,同时保持计算的稳定性。随着时间的推移,相
- 基于云计算的振动弦分析:谐波可视化与波动方程参数理解-AI云计算数值分析和代码验证
亚图跨际
AI云计算人工智能
振动弦方程是一个基础的偏微分方程,它描述了弹性弦的横向振动。其应用范围广泛,不仅可用于模拟乐器和一般的波动现象,更是数学物理以及深奥的弦理论中的重要基石。☁️AI云计算数值分析和代码验证振动弦方程是描述固定两端弹性弦横向振动的基本偏微分方程(PDE),其典型表达式为:∂2u∂t2=c2∂2u∂x2\frac{\partial^2u}{\partialt^2}=c^2\frac{\partial^2
- [数值分析方法库:第3版].Cambridge.Press.Numerical.Recipes.3rd.Edition【必备工具书】
点云SLAM
算法机器学习人工智能数值分析算法线性代数优化理论特殊函数与随机数生成
《NumericalRecipes:TheArtofScientificComputing,ThirdEdition(2007)》的目录部分(TableofContents)内容。这本书是数值计算领域的经典教材之一,涵盖了从基础数学概念、线性代数、插值与积分,到特殊函数与随机数生成等广泛主题。《科学计算的艺术:数值分析》(第三版)主要章节目录内容(方便查找使用):第1章预备知识1.0引言…第1页1
- WPS Excel转Word格式操作详解:高效处理数据展示的完整方案
nntxthml
wpsexcelwordwindows
WPSExcel转Word格式操作详解:高效处理数据展示的完整方案在日常办公场景中,我们常会遇到需要将Excel表格数据转换为Word文档的情况。例如制作项目报告时,需要将数值分析与文字说明结合呈现,或是将财务数据转换为可编辑的文档格式。本文将以WPSOffice为工具,系统讲解Excel转Word的标准化操作流程,同时提供格式优化和批量处理的高级技巧,助您高效完成跨文档协作。一、基础转换四步法(
- Burgers 方程
一杯水果茶!
瞎捣鼓Burgers方程流体力学
Burgers方程是什么?一维Burgers方程形式和意义直观画面:对流vs.粘性为什么Burgers方程重要?Cole–Hopf变换:从线性回到非线性兼具“可解析性”与“非线性特征”,是物理与数值分析双料“试金石”。如何“通透”地学?先上总结:Burgers方程=“非线性对流+粘性扩散”的炼金石:既保留真实流体非线性,又可解析求解。借助Cole–Hopf变换,可将它视为一个“可完全积分”的经典例
- Python数据分析【Numpy系列】np.linspace()用法详解
若北辰
numpy
np.linspace()是NumPy库中一个非常有用的函数,它用于在指定的区间内生成等间距的样本值。这个函数非常适合在数值分析、数据可视化和信号处理等领域生成数据点。函数语法numpy.linspace(start,stop,num=50,endpoint=True,retstep=False,dtype=
- STM32电机运动控制与直线插补算法原理讲解
驽马匠人
嵌入式/单片机stm32算法嵌入式硬件
1.概念不管是做自动化设备还是机器人运动学,都离不开对电机的控制,根据实际场景有各种各样的运动控制算法,而直线运动就是其中一种控制方式,今天就跟大家分享一个直线插补运动算法的原理,而代码的实现,则采用STM32单片机;插补的概念源自数值分析数学中插值的意思,它是一类在离散的已知数据点范围内构造新数据点的方法,这类方法可以用在机器人运动关节上,也大量应用在自动化数控设备上,比如在数控机床加工过程中,
- 【计算方法/数值分析】 期末复习整理
zombo_tany
算法算法图论
1.多项式计算的秦九韶算法对于f(x)=a0xn+a1xn−1...an−1x+anf(x)=a_0x^n+a_1x^{n-1}...a_{n-1}x+a_nf(x)=a0xn+a1xn−1...an−1x+an计算顺序按表格从上往下,从左往右a0a_0a0a1a_1a1a2a_2a2…an−1a_{n-1}an−1ana_nanx=x0x=x_0x=x0b0x0b_0x_0b0x0b1x0b_1
- Deepseek给遥感人的学习与职业发展建议
Python与遥感
学习
Deepseek给遥感人的学习与职业发展建议一、夯实四大基础支柱物理基础深入理解电磁波谱特性(可见光/红外/微波)、大气传输模型、辐射定标原理;掌握不同传感器(光学/SAR/LiDAR)的成像机理与数据特性差异;推荐学习:《遥感物理与定量反演基础》。数学工具矩阵运算(影像处理核心)、傅里叶变换(SAR处理)、概率统计(分类算法);掌握数值分析、最优化理论(用于反演算法);实践推荐:用Python实
- 【数值分析】拉格朗日插值法Matlab代码+插值回归拟合介绍
Wthirteen
matlab
文章目录前言一、插值、拟合、回归介绍二、拉格朗日插值法三、代码编写1.方法一2.方法二3.方法三四、总结参考文献前言本文先是对插值、拟合、回归这三种看似相同的方法进行介绍与区分,其次详细介绍插值中的拉格朗日插值法,并采用三种思路方法编写其对应的Matlab代码,供大家思考。方法一采用多层循环进行编写,码量极小,易于复刻,但并未求出插值函数;方法二采用符号变量结合矩阵运算,完全按照拉格朗日插值法的思
- 自动驾驶领域成长方案
树上求索
自动驾驶人工智能机器学习
一、学习目标成为自动驾驶领域专家,全面掌握自动驾驶技术体系,能独立进行自动驾驶系统设计、开发与优化,解决实际工程问题。二、成长阶段(一)基础理论奠基期(1-2年)专业知识学习:学习数学(高等数学、线性代数、概率论与数理统计、数值分析等),为理解算法和模型提供数学基础;深入研究自动驾驶涉及的专业课程,如控制理论、传感器原理(激光雷达、摄像头、毫米波雷达等)、机器学习(监督学习、无监督学习、深度学习)
- 东南大学研究生-数值分析上机题(2023)Python 6 常微分方程数值解法
天空的蓝耀
python
常微分方程初值问题数值解6.1题目编制RK4方法的通用程序;编制AB4方法的通用程序(由RK4提供初值);编制AB4-AM4预测校正方法通用程序(由RK4提供初值);编制带改进的AB4-AM4预测校正方法通用程序(由RK4提供初值);对于初值问题{y′=−x2y2,0≤x≤1.5,y(0)=3\begin{cases}y'=-x^{2}y^{2},&0\leqx\leq1.5,\\y(0)=3&\
- 东南大学研究生-数值分析上机题(2023)Python 1 绪论
天空的蓝耀
python
舍入误差与有效数1.1题目设SN=∑j=2N1j2−1S_N=\sum\limits_{j=2}^{N}\displaystyle\frac{1}{j^2-1}SN=j=2∑Nj2−11其精确值为12(23−1N−1N+1)\displaystyle\frac{1}{2}\left(\frac{2}{3}-\frac{1}{N}-\frac{1}{N+1}\right)21(32−N1−N+11)
- Pandas数据处理基础6---插值填充及其用法
阳光下的米雪
Pandas数据处理python
插值填充插值是数值分析中一种方法。简而言之,就是借助于一个函数(线性或非线性),再根据已知数据去求解未知数据的值。插值在数据领域非常常见,它的好处在于,可以尽量去还原数据本身的样子。我们可以通过interpolate()方法完成线性插值。当然,其他一些插值算法可以阅读官方文档了解。#生成一个DataFramedf=pd.DataFrame({'A':[1.1,2.2,np.nan,4.5,
- Python科学计算实战:数学建模与数值分析应用
数据小爬虫
api电商api数学建模python开发语言pygame前端facebook数据库
Python在科学计算和数学建模方面有着广泛的应用。以下是一个简单的例子,使用Python进行数学建模和数值分析。这个例子将演示如何使用Python来求解一元二次方程。1.一元二次方程一元二次方程是一个形如(ax^2+bx+c=0)的方程,其中(a\neq0)。2.求解方法求解一元二次方程,我们通常使用公式:[x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}]3.Python实现i
- Python求解微分方程
@星辰大海@
python开发语言
一、引言微分方程表示未知函数、未知函数的导数与自变量之间的关系的方程,叫做微分方程。微分方程种类很多,具体分类可参考以下博主的文章:https://blog.csdn.net/air_729/article/details/139411996微分方程的解又分成通解和特解,在工程中大多数微分方程是很难得到通解的,因此出现了数值分析或者计算方法这门学科,通过一次次迭代得到方程的某一个或某几个特解,本文
- 数值分析——LU分解(LU Factorization)
怀帝阍而不见
计算数学c++
本系列整理自博主21年秋季学期本科课程数值分析I的编程作业,内容相对基础,参考书:DavidKincaid,WardCheney-NumericalAnalysisMathematicsofScientificComputing(2002,AmericalMathematicalSociety)目录背景LU分解(LU-Factorization)辅助部分Doolittle分解Cholesky分解定
- 东南大学研究生-数值分析上机题(2023)Python 3 线性代数方程组数值解法
天空的蓝耀
python线性代数
列主元Gauss消去法3.1题目对于某电路的分析,归结为就求解线性方程组RI=V\pmb{RI=V}RI=V,其中R=[31−13000−10000−1335−90−1100000−931−100000000−1079−30000−9000−3057−70−500000−747−300000000−3041000000−50027−2000−9000−229]\pmb{R}=\begin{bmat
- SLAM中常用的库
wq_151
人工智能SLAM计算机视觉人工智能机器学习slam
SLAM中常用的库关于库关于库Pangolin是一个用于OpenGL显示/交互以及视频输入的一个轻量级、快速开发库,下面是Pangolin的Github网址:githubEigen是一个高层次的C++库,有效支持线性代数,矩阵和矢量运算,数值分析及其相关的算法。pagenanoflann是一个c++11标准库,用于构建具有不同拓扑(R2,R3(点云),SO(2)和SO(3)(2D和3D旋转组))的
- 机器学习先导课《数值分析》(1)——绪论及误差分析
WarrenRyan
数值分析——绪论及误差分析数值分析——绪论及误差分析全文目录数值分析的作用及其学习工具使用数值分析常用工具数值分析的具体实例(多项式简化求值)计算机数值误差产生机理计算机的数值存储方式计算机误差产生原因误差误差限与精度模型误差观测误差截断误差舍入误差有效数字缺失误差的产生和避免误差的传播算法设计的稳定性与病态条件病态问题计算的稳定性练习题ReferenceAboutMe联系方式全文目录(博客园)机
- python数值分析
寂静丿夏夜
python数据分析numpy
python数值分析上学期上数值分析课的时候被老师要求用python写代码,最后代码加上实验报告,写了一天终于给整完了。为了让大家不在这么煎熬秃顶,我就把我之前写的代码整理一下分享给大家。python二分法解决方程:x^3±2*x-5、、、defsolve_function(x):returnx**3-2*x-5defdichotomy(left,right,eps):mid=(left+righ
- 二次和三次样条曲线的作用,生成二次和三次样条曲线的方法
kfjh
算法
为什么二次样条曲线在插值和逼近中有重要作用二次样条曲线在插值和逼近中有重要作用,主要原因如下:二次样条插值具有一些重要的性质和应用价值。例如,它能够保证拟合曲线不仅通过所有给定的数据点,而且在每段曲线连接处一阶导数相等,从而使得拟合曲线相对平滑。每段曲线是二次曲线。为什么三次样条曲线在插值和逼近中有重要作用三次样条曲线在插值和逼近中有重要作用,主要原因如下:首先,三次样条插值是一种常用的数值分析方
- 2019-10-04 学习极大似然估计与优化理论
小郑的学习笔记
主要推导了一个公式推导MLE与LSE.jpeg即用极大似然估计(MLE)的角度去解多元线性回归其结果与最小二乘(LSE)解的结果是一样的,这一点我觉得很神奇。可以看这个解释例子https://www.cnblogs.com/little-YTMM/p/5700226.html2。学习数值分析,学习了两种优化,无约束最优化和有约束最优化。无约束最优化主要有梯度下降法牛顿法梯度下降法在接近极值的时候会
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号