- 应用光学的几组公式
萌龙在天
在不同的区域,有不同的计算公式。由于需要对大量光线进行计算,所以计算方法的选择就和重要。优先选择可以消除中间量的计算公式。近轴光线追迹所遵循的公式。其次就是几组放大率的公式,转面公式,拉赫不变量。各个光学系统的分辨率,孔径,入瞳,出瞳之间所遵循的公式。计算像差的公式。符号所代表的意义,以及符号与符号间的联系,需要认真的去用笔去写下来,分析和理解。最主要的就是要明白光学系统所规定的符号规则,正确的标
- 目标检测YOLO系列从入门到精通技术详解100篇-【目标检测】工业相机
格图素书
数码相机目标检测人工智能
目录知识储备深度相机1TOF2双目视觉3结构光4智能门锁应用5手机应用算法原理相机的成像与标定模型相机标定的实施·标定过程的算法实施相机标定的扩展CCD工业相机、镜头倍率及相关参数计算方法知识储备深度相机1TOF1.1Kinectv2Kinectv2是Microsoft在2014年发售的,如图1-1所示。相比于Kinectv1在硬件和软件上作出了很大的进化,且在深度测量的系统和非系统误差方面表现出
- 2022-04-17
图灵基因
NatBiotech|组织中单细胞转录组的空间图谱原创图灵基因图灵基因2022-04-1707:03收录于话题#前沿生物大数据分析单细胞RNA测序(scRNA-seq)已经彻底改变了单细胞水平上的基因表达研究。最近,空间技术通过添加空间信息将转录组学提升到了一个新的水平。但是,它缺乏单细胞分辨率。现在,来自德克萨斯大学MD安德森癌症中心的一个小组开发了一种名为CellTrek的计算方法,将这两个数
- 计算机视觉中,如何理解自适应和注意力机制的关系?
Wils0nEdwards
计算机视觉人工智能
自适应和注意力机制之间的关系密切相关,注意力机制本质上是一种自适应的计算方法,它能够根据输入数据的不同特点,自主选择和聚焦于输入的某些部分或特征。以下是两者之间的具体关系和如何理解它们:1.注意力机制的自适应特性注意力机制的核心功能是为不同输入元素(如特征、位置、通道等)分配不同的权重。这些权重是通过学习动态生成的,表示模型对不同输入元素的关注程度。由于这些权重是根据具体的输入数据动态计算的,因此
- 子网ip和ip地址一样吗?子网ip地址怎么算
hgdlip
iptcp/ip网络协议网络子网ip
在计算机网络的广阔世界里,IP地址作为设备的唯一标识,扮演着举足轻重的角色。然而,随着网络规模的扩大和复杂性的增加,子网划分成为提升网络管理效率和安全性的重要手段。这时,“子网IP地址”这一概念应运而生,那么。子网IP和IP地址一样吗?本文将深入探讨子网IP地址与普通IP地址之间的差异,并详细解析子网IP地址的计算方法,帮助读者更好地理解和应用这一网络知识。一、子网IP地址
- Python求解微分方程
@星辰大海@
python开发语言
一、引言微分方程表示未知函数、未知函数的导数与自变量之间的关系的方程,叫做微分方程。微分方程种类很多,具体分类可参考以下博主的文章:https://blog.csdn.net/air_729/article/details/139411996微分方程的解又分成通解和特解,在工程中大多数微分方程是很难得到通解的,因此出现了数值分析或者计算方法这门学科,通过一次次迭代得到方程的某一个或某几个特解,本文
- 《比的意义》教学反思
白沙小学唐媛媛
《比的意义》,这部分内容是在学生学过分数与除法的关系,分数乘除法的意义和计算方法,以及分数乘除法应用题的基础上进行教学的。比的概念实质是对两个数量进行比较表示两个数量间的倍比关系。任何相关的两个数量的比都可以抽象为两个数的比,既有同类量的比,又有不同类量的比。教材还介绍了每个比中两项的名称和比值的概念,举例说明比值的求法,以及比和除法、分数的关系,着重说明两点:(1)比值的表示法,通常用分数表示,
- wpl计算方法_C++二叉树计算带权路径长度(WPL)的算法
weixin_39878549
wpl计算方法
题目:二叉树的带权路径长度是二叉树中所有叶子结点的带权路径长度之和。给定二叉链表的存储的结点结构为left|weight|right存储的是叶子结点的非负权值。设计算法求二叉树的带权路径长度WPL。WPL=∑叶子结点的权值×结点到根结点的分支个数例如:非递归算法算法思想:根据公式,需要记录每个结点到根结点的分支个数,这个过程通过对树进行广度遍历(借助队列)进行记录。在非叶子结点weight初值为-
- python读二进制格点雷达基数据_radar: 基于python pycinrad 以及多种类库 编写基于java 的雷达基数据统一格式读取...
weixin_39793434
radar-core介绍基于pythonpycinrad以及多种类库编写基于java的雷达基数据统一格式读取包括读取分层ppi、插值到等经纬度的网格化ppi以及cappi、vcs等基本计算方法回波顶高、组合反射率、垂直液态水等产品计算后期增加1、气象局l3、swan雷达格式读取2、降水估计、光流+半拉格朗日外推等多种雷达算法软件架构1、radar-core雷达基数据读取类库(1)读取方法Strin
- 位操作(Bitwise Operation)
学Java的skyyyyyyyy
java位操作数据结构
位操作(BitwiseOperation)是一种直接对整数的二进制位进行操作的计算方法。在计算机中,数据通常以二进制形式存储,位操作允许我们直接操作这些二进制位。位操作通常比常规的算术运算更高效,因为它们直接作用于二进制位而不涉及更复杂的计算。常见的位操作符1.按位与(&):对应位都为1时,结果为1,否则为0。例如:1010&1100=10002.按位或(|):只要对应位有一个为1,结果就为1。例
- crc循环冗余校验码c语言,CRC循环冗余校验码的生成
子绘绘
crc循环冗余校验码c语言
众所周知,不可能有永远都不会出错的人,同样也不可能有永远不出错的计算机,永远不出错的数据。人有知错能改的觉悟,计算机也有,不过计算机没有人类聪明,只能通过一个特定的方法进行自我改正,这就是校验码存在的必要了。一般用得比较多的校验码有奇偶校验码,CRC循环冗余校验码,海明校验码等。这里只介绍用的最多的CRC循环冗余校验码。何为校验码校验码是通过一种计算方法,发出端在原始数据的尾部添加若干数据;然后接
- TCP为什么是可靠的传输
healing97
网络
TCP为什么是可靠的传输(1)检验和TCP检验和的计算与UDP一样,在计算时要加上12byte的伪首部,检验范围包括TCP首部及数据部分,但是UDP的检验和字段为可选的,而TCP中是必须有的。计算方法为:在发送方将整个报文段分为多个16位的段,然后将所有段进行反码相加,将结果存放在检验和字段中,接收方用相同的方法进行计算,如最终结果为检验字段所有位是全1则正确(UDP中为0是正确),否则存在错误。
- 机器学习系列12:反向传播算法
SuperFengCode
机器学习系列机器学习神经网络反向传播算法梯度检验机器学习笔记
当我们要运用高级算法进行梯度下降时,需要计算两个值,代价函数和代价函数的偏导数:代价函数我们之前已经知道怎么求了,现在只需要求代价函数的偏导数即可。采用如下方法,先进行前向传播算法,然后再进行反向传播算法(BackpropagationAlgorithm),反向传播算法与前向传播算法方向相反,它用来求代价函数的偏导数。具体过程看下图:用δ作为误差,计算方法为:有时我们在运用反向传播算法时会遇到bu
- 中国各地级市的海拔标准差
小王毕业啦
大数据算法大数据人工智能社科数据
海拔标准差是衡量地理测量准确性的重要指标,它通过计算特定地点的海拔测量值与平均海拔之间的偏差来评估数据的可靠性。较小的标准差意味着测量结果较为一致,而较大的标准差则可能指出数据的波动性或测量误差。计算方法海拔标准差的计算遵循以下公式:\text{标准差}=\sqrt{\frac{1}{N}\sum(\text{海拔数据}-\text{平均海拔})^2}标准差=N1∑(海拔数据−平均海拔)2其中:N
- 基于示例详细讲解模型PTQ量化的步骤(含代码)
LQS2020
卷积神经网络python
详细探讨模型PTQ量化每个步骤,涉及更多的技术细节和实际计算方法,以便更好地理解PTQ(Post-TrainingQuantization,训练后量化)的全过程。1.模型训练我们假设已经训练了一个卷积神经网络(CNN),例如VGG-16。训练完成后,我们得到了一个以32位浮点数表示的模型权重和激活值。2.收集统计信息在量化之前,我们需要从模型中收集统计信息,以帮助确定量化的参数。收集权重和激活的统
- 盒子滤波(BOX FILTER)方框滤波学习笔记
Hilary煜
学习笔记matlab数据结构
功能:在给定的滑动窗口大小下,对每个窗口内的像素值进行快速相加求和。应用:图像的局部矩形内像素的和、平方和、均值、方差等特征也可以用类似Haar特征的计算方法来计算Haar特征是一种用于物体识别的数字图像特征,特别是在人脸检测领域中得到了广泛应用。Haar特征得名于其与原始的Haar小波变换在计算方式上的相似性。这种特征通过计算图像中相邻矩形区域的像素强度差来捕捉图像的某些特性,如边缘、线条和中心
- EXCEL 十进制角度转换为度分秒格式
happybubbles
excel算法
写篇比较简单的文章,大家都不屑一顾的问题,但希望有人能够用上。最近同事用到使用EXCEL将十进制角度转度分秒,找我帮忙,网上搜罗一下,大多是度分秒转为十进制的计算方法,偶有这种算法,还要判断度的位数,如30°一个算法,130°又一个算法。且精度只能精确到秒的个位,对于测量坐标转换来说,远远不够。几经演算,反过来在同事的帮助下,写了一个通用的计算公式,可以精确得计算出结果,如下:fx=TEXT(IN
- 高数知识补充----矩阵、行列式、数学符号
chxin14016
笔记高数算法线性代数
矩阵计算参考链接:矩阵如何运算?——线性代数_矩阵计算-CSDN博客矩阵计算:【前找行,后找列,相乘相加】。行列式计算参考链接:实用的行列式计算方法——线性代数(det)_det线性代数-CSDN博客参考链接:行列式的计算方法(含四种,看完就会!)-CSDN博客一、对角线法▍以三阶行列式为例:①将第一、二列平移到行列式右侧②如图做出六条斜对角线③对角线上的元素相乘,红色相加的和减去蓝色相加的和D3
- 家里如何选购空调?购买空调需要注意哪些方面?
高省APP
一,家用空调怎样选1,选择匹数,卧室通常用挂机,挂机的型号有一匹的,也就是26的型号,1.5匹和大1.5匹的也就我们通常说的32和35。2,怎样挑选匹数,这还要看房间面积大小和房子的朝向,例如;西晒,层高,顶层和自建房等,这都和选择匹数有很大关系,3,选择匹数其实也不用那么神秘,也不用复杂公式,说的简单易懂,也方便理解,那就用房间面积乘以2的计算方法,例如:房间面积13平方米乘2就买26的,也就是
- 【Unity3D与23种设计模式】策略模式(Strategy)
林尧彬
设计模式游戏
GoF中定义:“定义一组算法,并封装每个算法,让它们之间可以彼此交换使用。策略模式让这些算法在客户端使用它们时能更加独立。”游戏开发过程中不同的角色会有不同的属性计算方法初级解决方法便是:ifelse,不够再来几个ifelse高级点儿的就用switchcase配合enum对于小型项目或者快速开发验证用的项目而言,这么做是没问题的但是开发规模或产品化项目时,最好还是选择策略模式在策略模式中,算法中的
- echarts瀑布图_一种基于阶梯瀑布图的数据计算方法与流程
孤独凤凰战士
echarts瀑布图
本发明涉及数据分析技术领域,具体地说是一种基于阶梯瀑布图的数据计算方法。背景技术:Echarts是一个纯Javascript的图表库,可以流畅的运行在PC和移动设备上,兼容当前绝大部分浏览器(IE8/9/10/11,Chrome,Firefox,Safari等),底层依赖轻量级的Canvas类库ZRender,提供直观,生动,可交互,可高度个性化定制的数据可视化图表。ECharts提供了常规的折线
- 什么是C125阶段弱于大盘选股指标?
股票
C125阶段弱于大盘选股指标是一种常用的股票选股指标,它的计算方法如下:C125选股指标的公式:C125=(现阶段股价-上一个交易日收盘价)/上一个交易日收盘价*100其中,C125表示当前阶段的选股指标,上一个交易日收盘价是指前一个交易日的收盘价,现阶段股价是指当前交易日的收盘价。计算出C125指标后,如果该指标的值大于0,则表示当前股票的走势比大盘表现更好;如果该指标的值小于0,则表示当前股票
- 【机器学习】初学者经典案例(随记)
听忆.
机器学习人工智能数据挖掘深度学习语言模型
边走、边悟迟早会好一、概念机器学习是一种利用数据来改进模型性能的计算方法,属于人工智能的一个分支。它旨在让计算机系统通过经验自动改进,而不需要明确编程。类型监督学习:使用带标签的数据进行训练,包括分类(如垃圾邮件检测)和回归(如房价预测)。无监督学习:使用不带标签的数据进行训练,包括聚类(如客户细分)和降维(如主成分分析)。强化学习:通过与环境的交互学习策略,以最大化累积奖励(如AlphaGo)。
- ADL腾落指标——Σ(上涨家数-下跌家数)
浮云花心
ADL指标中文名:ADL指标计算方法:Σ(上涨家数-下跌家数)领域:股市反应:股市大势的走向与趋势计算公式腾落指标(ADL)=Σ(上涨家数-下跌家数)计算原理ADL指标是以股票每天上涨和下跌的家数作为计算和观察的对象,借此了解股市的人气的兴衰,探测大势内在的动量是强势还是弱势,从而研判股市未来动向的技术指标。它是将在该市场上上市交易的所有股票家数中,每日上涨的股票家数减去下跌股票家数所得到的余额的
- 【数据结构与算法】从左到右快速幂和从右到左快速幂
星眺北海
数据结构与算法算法快速幂
引出问题在计算机科学中,幂运算是一种非常常见且基础的操作,尤其是在涉及到大数运算时,幂运算的效率对整个计算过程至关重要。设想以下场景:在加密算法中,如RSA算法,常常需要计算大数的幂,且这种计算必须在一定时间内完成,以确保安全性。在数值计算中,我们可能需要反复进行大规模的幂运算,如果采用最直接的计算方法,其计算量和时间将非常庞大。如果我们采用朴素的计算方法,例如计算aba^bab时,通过不断相乘a
- 岩土工程中的有限单元法:渗流问题的理论探索与编程实践
2401_83402415
岩土岩土工程PlaxisAbaqusComsolParaviewFlac3D有限单位法
有限单元法在岩土工程问题中应用非常广泛,很多商业软件如Plaxis/Abaqus/Comsol等都采用有限单元解法。尽管各类商业软件使用方便,但其使用对用户来说往往是一个“黑箱子”。相比而言,开源的有限元程序计算方法透明、计算过程可控,用户可根据自己的需求进行必要的修改,这一点对于科研人员特别重要。岩土工程中的渗流问题(后续将进行强度问题、固结问题等专题),如何一步一步地搭建自己的模型,包括前处理
- 进阶岛 - LMDeploy 量化部署进阶实践
ydogg
InternLM大模型学习书生浦语InternLM量化AWQ
一、显存计算方法InternLM系列模型的显存使用主要2部分构成:模型权重kvcache以InternLM2.5-7b-chat为例,它的权重类型是bfloat16,即一个参数占用2字节的浮点数。具体信息可以查看模型目录下的config.json文件。因此,对于该7B(70亿)参数的模型,每个参数使用16位浮点数(2字节)表示,另外,lmdeploy默认设置cache-max-entry-coun
- 品牌符号的价值到底是什么?
段康符号战略
这些年大家一直都在说,品牌符号、符号战略的重要性,品牌符号价值到底是什么,可能现在还有人只知皮毛。在美国会计制度中,美国公司必须在资产负债表上将所并购的公司的商誉资本化,也就是品牌价值必须量化。那么品牌是如何创造价值,如何量化的呢?我们可以通过国际品牌价值评估的计算方法,来分析符号是怎样为企业品牌创造价值的。国际品牌价值评估机构通用的品牌价值计算方法是:品牌价值总数=企业经济利润×品牌的贡献力×品
- 【数据结构】深入理解时间复杂度和空间复杂度
Yanni--
数据结构数据结构c语言
目录时间复杂度时间复杂度的计算方法1.用常数1取代运行时间中的所以加法常数。2.在修改后的运行次数函数里,只保留最高项3.如果最高阶项存在且不是1,则去除与这个项目相乘的常数。空间复杂度空间复杂度的计算方法例子1:例子2:总结与感悟我相信很多小伙伴在学习数据结构之前听到过时间复杂度和空间复杂度或者与其相关的词语,就觉得很难,听起来就很复杂,但时间复杂度和空间复杂度的“复杂”可不复杂哦!时间复杂度时
- 排列怎么用计算机计算公式,数学排列组合公式计算器
weixin_39672979
排列怎么用计算机计算公式
数学排列组合公式计算器可以帮助你快速计算排列组合,为学习数学排列组合的朋友带来方便,只要输入相应的数值就能快速计算出结果,帮助你提高效率,节省时间和精力,非常方便快捷。排列组合计算方法:排列(Pnm(n为下标,m为上标))数n的阶乘:n!=n(n-1)(n-2)...2×1Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标)
- apache ftpserver-CentOS config
gengzg
apache
<server xmlns="http://mina.apache.org/ftpserver/spring/v1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://mina.apache.o
- 优化MySQL数据库性能的八种方法
AILIKES
sqlmysql
1、选取最适用的字段属性 MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快。因此,在创建表的时候,为了获得更好的 性能,我们可以将表中字段的宽度设得尽可能小。例如,在定义邮政编码这个字段时,如果将其设置为CHAR(255),显然给数据库增加了不必要的空间,甚至使用VARCHAR这种类型也是多余的,因为CHAR(6)就可以很
- JeeSite 企业信息化快速开发平台
Kai_Ge
JeeSite
JeeSite 企业信息化快速开发平台
平台简介
JeeSite是基于多个优秀的开源项目,高度整合封装而成的高效,高性能,强安全性的开源Java EE快速开发平台。
JeeSite本身是以Spring Framework为核心容器,Spring MVC为模型视图控制器,MyBatis为数据访问层, Apache Shiro为权限授权层,Ehcahe对常用数据进行缓存,Activit为工作流
- 通过Spring Mail Api发送邮件
120153216
邮件main
原文地址:http://www.open-open.com/lib/view/open1346857871615.html
使用Java Mail API来发送邮件也很容易实现,但是最近公司一个同事封装的邮件API实在让我无法接受,于是便打算改用Spring Mail API来发送邮件,顺便记录下这篇文章。 【Spring Mail API】
Spring Mail API都在org.spri
- Pysvn 程序员使用指南
2002wmj
SVN
源文件:http://ju.outofmemory.cn/entry/35762
这是一篇关于pysvn模块的指南.
完整和详细的API请参考 http://pysvn.tigris.org/docs/pysvn_prog_ref.html.
pysvn是操作Subversion版本控制的Python接口模块. 这个API接口可以管理一个工作副本, 查询档案库, 和同步两个.
该
- 在SQLSERVER中查找被阻塞和正在被阻塞的SQL
357029540
SQL Server
SELECT R.session_id AS BlockedSessionID ,
S.session_id AS BlockingSessionID ,
Q1.text AS Block
- Intent 常用的用法备忘
7454103
.netandroidGoogleBlogF#
Intent
应该算是Android中特有的东西。你可以在Intent中指定程序 要执行的动作(比如:view,edit,dial),以及程序执行到该动作时所需要的资料 。都指定好后,只要调用startActivity(),Android系统 会自动寻找最符合你指定要求的应用 程序,并执行该程序。
下面列出几种Intent 的用法
显示网页:
- Spring定时器时间配置
adminjun
spring时间配置定时器
红圈中的值由6个数字组成,中间用空格分隔。第一个数字表示定时任务执行时间的秒,第二个数字表示分钟,第三个数字表示小时,后面三个数字表示日,月,年,< xmlnamespace prefix ="o" ns ="urn:schemas-microsoft-com:office:office" />
测试的时候,由于是每天定时执行,所以后面三个数
- POJ 2421 Constructing Roads 最小生成树
aijuans
最小生成树
来源:http://poj.org/problem?id=2421
题意:还是给你n个点,然后求最小生成树。特殊之处在于有一些点之间已经连上了边。
思路:对于已经有边的点,特殊标记一下,加边的时候把这些边的权值赋值为0即可。这样就可以既保证这些边一定存在,又保证了所求的结果正确。
代码:
#include <iostream>
#include <cstdio>
- 重构笔记——提取方法(Extract Method)
ayaoxinchao
java重构提炼函数局部变量提取方法
提取方法(Extract Method)是最常用的重构手法之一。当看到一个方法过长或者方法很难让人理解其意图的时候,这时候就可以用提取方法这种重构手法。
下面是我学习这个重构手法的笔记:
提取方法看起来好像仅仅是将被提取方法中的一段代码,放到目标方法中。其实,当方法足够复杂的时候,提取方法也会变得复杂。当然,如果提取方法这种重构手法无法进行时,就可能需要选择其他
- 为UILabel添加点击事件
bewithme
UILabel
默认情况下UILabel是不支持点击事件的,网上查了查居然没有一个是完整的答案,现在我提供一个完整的代码。
UILabel *l = [[UILabel alloc] initWithFrame:CGRectMake(60, 0, listV.frame.size.width - 60, listV.frame.size.height)]
- NoSQL数据库之Redis数据库管理(PHP-REDIS实例)
bijian1013
redis数据库NoSQL
一.redis.php
<?php
//实例化
$redis = new Redis();
//连接服务器
$redis->connect("localhost");
//授权
$redis->auth("lamplijie");
//相关操
- SecureCRT使用备注
bingyingao
secureCRT每页行数
SecureCRT日志和卷屏行数设置
一、使用securecrt时,设置自动日志记录功能。
1、在C:\Program Files\SecureCRT\下新建一个文件夹(也就是你的CRT可执行文件的路径),命名为Logs;
2、点击Options -> Global Options -> Default Session -> Edite Default Sett
- 【Scala九】Scala核心三:泛型
bit1129
scala
泛型类
package spark.examples.scala.generics
class GenericClass[K, V](val k: K, val v: V) {
def print() {
println(k + "," + v)
}
}
object GenericClass {
def main(args: Arr
- 素数与音乐
bookjovi
素数数学haskell
由于一直在看haskell,不可避免的接触到了很多数学知识,其中数论最多,如素数,斐波那契数列等,很多在学生时代无法理解的数学现在似乎也能领悟到那么一点。
闲暇之余,从图书馆找了<<The music of primes>>和<<世界数学通史>>读了几遍。其中素数的音乐这本书与软件界熟知的&l
- Java-Collections Framework学习与总结-IdentityHashMap
BrokenDreams
Collections
这篇总结一下java.util.IdentityHashMap。从类名上可以猜到,这个类本质应该还是一个散列表,只是前面有Identity修饰,是一种特殊的HashMap。
简单的说,IdentityHashMap和HashM
- 读《研磨设计模式》-代码笔记-享元模式-Flyweight
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java
- PS人像润饰&调色教程集锦
cherishLC
PS
1、仿制图章沿轮廓润饰——柔化图像,凸显轮廓
http://www.howzhi.com/course/retouching/
新建一个透明图层,使用仿制图章不断Alt+鼠标左键选点,设置透明度为21%,大小为修饰区域的1/3左右(比如胳膊宽度的1/3),再沿纹理方向(比如胳膊方向)进行修饰。
所有修饰完成后,对该润饰图层添加噪声,噪声大小应该和
- 更新多个字段的UPDATE语句
crabdave
update
更新多个字段的UPDATE语句
update tableA a
set (a.v1, a.v2, a.v3, a.v4) = --使用括号确定更新的字段范围
- hive实例讲解实现in和not in子句
daizj
hivenot inin
本文转自:http://www.cnblogs.com/ggjucheng/archive/2013/01/03/2842855.html
当前hive不支持 in或not in 中包含查询子句的语法,所以只能通过left join实现。
假设有一个登陆表login(当天登陆记录,只有一个uid),和一个用户注册表regusers(当天注册用户,字段只有一个uid),这两个表都包含
- 一道24点的10+种非人类解法(2,3,10,10)
dsjt
算法
这是人类算24点的方法?!!!
事件缘由:今天晚上突然看到一条24点状态,当时惊为天人,这NM叫人啊?以下是那条状态
朱明西 : 24点,算2 3 10 10,我LX炮狗等面对四张牌痛不欲生,结果跑跑同学扫了一眼说,算出来了,2的10次方减10的3次方。。我草这是人类的算24点啊。。
然后么。。。我就在深夜很得瑟的问室友求室友算
刚出完题,文哥的暴走之旅开始了
5秒后
- 关于YII的菜单插件 CMenu和面包末breadcrumbs路径管理插件的一些使用问题
dcj3sjt126com
yiiframework
在使用 YIi的路径管理工具时,发现了一个问题。 <?php  
- 对象与关系之间的矛盾:“阻抗失配”效应[转]
come_for_dream
对象
概述
“阻抗失配”这一词组通常用来描述面向对象应用向传统的关系数据库(RDBMS)存放数据时所遇到的数据表述不一致问题。C++程序员已经被这个问题困扰了好多年,而现在的Java程序员和其它面向对象开发人员也对这个问题深感头痛。
“阻抗失配”产生的原因是因为对象模型与关系模型之间缺乏固有的亲合力。“阻抗失配”所带来的问题包括:类的层次关系必须绑定为关系模式(将对象
- 学习编程那点事
gcq511120594
编程互联网
一年前的夏天,我还在纠结要不要改行,要不要去学php?能学到真本事吗?改行能成功吗?太多的问题,我终于不顾一切,下定决心,辞去了工作,来到传说中的帝都。老师给的乘车方式还算有效,很顺利的就到了学校,赶巧了,正好学校搬到了新校区。先安顿了下来,过了个轻松的周末,第一次到帝都,逛逛吧!
接下来的周一,是我噩梦的开始,学习内容对我这个零基础的人来说,除了勉强完成老师布置的作业外,我已经没有时间和精力去
- Reverse Linked List II
hcx2013
list
Reverse a linked list from position m to n. Do it in-place and in one-pass.
For example:Given 1->2->3->4->5->NULL, m = 2 and n = 4,
return 
- Spring4.1新特性——页面自动化测试框架Spring MVC Test HtmlUnit简介
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- Hadoop集群工具distcp
liyonghui160com
1. 环境描述
两个集群:rock 和 stone
rock无kerberos权限认证,stone有要求认证。
1. 从rock复制到stone,采用hdfs
Hadoop distcp -i hdfs://rock-nn:8020/user/cxz/input hdfs://stone-nn:8020/user/cxz/运行在rock端,即源端问题:报版本
- 一个备份MySQL数据库的简单Shell脚本
pda158
mysql脚本
主脚本(用于备份mysql数据库): 该Shell脚本可以自动备份
数据库。只要复制粘贴本脚本到文本编辑器中,输入数据库用户名、密码以及数据库名即可。我备份数据库使用的是mysqlump 命令。后面会对每行脚本命令进行说明。
1. 分别建立目录“backup”和“oldbackup” #mkdir /backup #mkdir /oldbackup
- 300个涵盖IT各方面的免费资源(中)——设计与编码篇
shoothao
IT资源图标库图片库色彩板字体
A. 免费的设计资源
Freebbble:来自于Dribbble的免费的高质量作品。
Dribbble:Dribbble上“免费”的搜索结果——这是巨大的宝藏。
Graphic Burger:每个像素点都做得很细的绝佳的设计资源。
Pixel Buddha:免费和优质资源的专业社区。
Premium Pixels:为那些有创意的人提供免费的素材。
- thrift总结 - 跨语言服务开发
uule
thrift
官网
官网JAVA例子
thrift入门介绍
IBM-Apache Thrift - 可伸缩的跨语言服务开发框架
Thrift入门及Java实例演示
thrift的使用介绍
RPC
POM:
<dependency>
<groupId>org.apache.thrift</groupId>