opencv实现导向滤波(GuidedFilter)

何凯明去雾算法中的导向滤波实现,原文地址导向滤波。

导向图像I,滤波输入图像p以及输出图像q。像素点 i 处的滤波结果是被表达成一个加权平均:


假设导向滤波器在导向图像I和滤波输出q之间是一个局部线性模型:



最小化下面的窗口Wk的代价函数:


用来确定a,b的值

opencv实现导向滤波(GuidedFilter)_第1张图片

其中

论文所给算法如下:

opencv实现导向滤波(GuidedFilter)_第2张图片


matlab代码如下:

function q = guidedfilter(I, p, r, eps)
%   GUIDEDFILTER   O(1) time implementation of guided filter.
%
%   - guidance image: I (should be a gray-scale/single channel image)
%   - filtering input image: p (should be a gray-scale/single channel image)
%   - local window radius: r
%   - regularization parameter: eps

[hei, wid] = size(I);
N = boxfilter(ones(hei, wid), r); % the size of each local patch; N=(2r+1)^2 except for boundary pixels.

mean_I = boxfilter(I, r) ./ N;
mean_p = boxfilter(p, r) ./ N;
mean_Ip = boxfilter(I.*p, r) ./ N;
cov_Ip = mean_Ip - mean_I .* mean_p; % this is the covariance of (I, p) in each local patch.

mean_II = boxfilter(I.*I, r) ./ N;
var_I = mean_II - mean_I .* mean_I;

a = cov_Ip ./ (var_I + eps); % Eqn. (5) in the paper;
b = mean_p - a .* mean_I; % Eqn. (6) in the paper;

mean_a = boxfilter(a, r) ./ N;
mean_b = boxfilter(b, r) ./ N;

q = mean_a .* I + mean_b; % Eqn. (8) in the paper;
end
function imDst = boxfilter(imSrc, r)

%   BOXFILTER   O(1) time box filtering using cumulative sum
%
%   - Definition imDst(x, y)=sum(sum(imSrc(x-r:x+r,y-r:y+r)));
%   - Running time independent of r; 
%   - Equivalent to the function: colfilt(imSrc, [2*r+1, 2*r+1], 'sliding', @sum);
%   - But much faster.

[hei, wid] = size(imSrc);
imDst = zeros(size(imSrc));

%cumulative sum over Y axis
imCum = cumsum(imSrc, 1);
%difference over Y axis
imDst(1:r+1, :) = imCum(1+r:2*r+1, :);
imDst(r+2:hei-r, :) = imCum(2*r+2:hei, :) - imCum(1:hei-2*r-1, :);
imDst(hei-r+1:hei, :) = repmat(imCum(hei, :), [r, 1]) - imCum(hei-2*r:hei-r-1, :);

%cumulative sum over X axis
imCum = cumsum(imDst, 2);
%difference over Y axis
imDst(:, 1:r+1) = imCum(:, 1+r:2*r+1);
imDst(:, r+2:wid-r) = imCum(:, 2*r+2:wid) - imCum(:, 1:wid-2*r-1);
imDst(:, wid-r+1:wid) = repmat(imCum(:, wid), [1, r]) - imCum(:, wid-2*r:wid-r-1);
end

以下为单通道图像导向滤波opencv实现:

#include "myGuidedFilter_Mat.h"

CvMat * cumsum(CvMat *src,int rc)
{
	CvMat *Imdst = cvCreateMat(src->rows,src->cols,CV_64FC1);
	Imdst=cvCloneMat(src);
	if (rc==1)
	{
		for(int y=1;yheight;y++)
		{
			double *ptr0=(double *)(Imdst->data.ptr+(y-1)*Imdst->step);
			double *ptr=(double *)(Imdst->data.ptr+y*Imdst->step);
			for(int x=0;xwidth;x++)
			{
				ptr[x]=ptr0[x]+ptr[x];
				//cvSetReal2D(Imdst,y,x,cvGetReal2D(Imdst,y-1,x)+cvGetReal2D(Imdst,y,x));
			}
		}
	}
	else if (rc==2)
	{
		for(int y=0;yheight;y++)
		{
			double *ptr=(double *)(Imdst->data.ptr+y*Imdst->step);
			for(int x=1;xwidth;x++)
			{
				ptr[x]=ptr[x-1]+ptr[x];
				//cvSetReal2D(Imdst,y,x,cvGetReal2D(Imdst,y,x-1)+cvGetReal2D(Imdst,y,x));
			}
		}
	}
	return Imdst;
}
CvMat * boxFilter(CvMat *src,int r)
{
	CvMat *Imdst = cvCreateMat(src->rows,src->cols,CV_64FC1);
	Imdst=cvCloneMat(src);
	CvMat *subImage;

	//imCum = cumsum(imSrc, 1);
	CvMat *imCum = cumsum(Imdst,1);

	//imDst(1:r+1, :) = imCum(1+r:2*r+1, :);
	for (int y = 0;ydata.ptr+y*Imdst->step;
		//double *ptrCum=(double *)imCum->data.ptr+(y+r)*imCum->step;
		for(int x = 0;xwidth;x++)
		{
			//ptrDst[x]=ptrCum[x];
			cvSetReal2D(Imdst,y,x,cvGetReal2D(imCum,y+r,x));
		}
	}

	//imDst(r+2:hei-r, :) = imCum(2*r+2:hei, :) - imCum(1:hei-2*r-1, :);
	for (int y = r+1;yheight-r-1;y++)
	{
		for(int x = 0;xwidth;x++)
		{
			cvSetReal2D(Imdst,y,x,(cvGetReal2D(imCum,y+r,x)-cvGetReal2D(imCum,y-r-1,x)));
		}
	}

	//imDst(hei-r+1:hei, :) = repmat(imCum(hei, :), [r, 1]) - imCum(hei-2*r:hei-r-1, :);
	subImage = cvCreateMat(r,Imdst->width,CV_64FC1);
	CvMat *tem=cvCreateMat(1,Imdst->width,CV_64FC1);
	cvGetRow(imCum,tem,imCum->height-1);
	cvRepeat(tem,subImage);
	/*for(int y=0;ywidth;x++)
		{
			cvSetReal2D(subImage,y,x,cvGetReal2D(imCum,Imdst->height-1,x));
		}
	}*/
	for (int y = Imdst->height-r;yheight;y++)
	{
		for(int x = 0;xwidth;x++)
		{
			cvSetReal2D(Imdst,y,x,cvGetReal2D(subImage,y-Imdst->height+r,x)-cvGetReal2D(imCum,y-r-1,x));
		}
	}
	cvReleaseMat(&subImage);
	cvReleaseMat(&tem);
 
	imCum = cumsum(Imdst, 2);
	//imDst(:, 1:r+1) = imCum(:, 1+r:2*r+1);
	for (int y = 0;yheight;y++)
	{
		for(int x = 0;xheight;y++)
	{
		for(int x = r+1;xwidth-r-1;x++)
		{
			cvSetReal2D(Imdst,y,x,(cvGetReal2D(imCum,y,x+r)-cvGetReal2D(imCum,y,x-r-1)));
		}
	}
 
	//imDst(:, wid-r+1:wid) = repmat(imCum(:, wid), [1, r]) - imCum(:, wid-2*r:wid-r-1);
	subImage = cvCreateMat(Imdst->height,r,CV_64FC1);
	tem=cvCreateMat(Imdst->height,1,CV_64FC1);
	cvGetCol(imCum,tem,imCum->width-1);
	cvRepeat(tem,subImage);
	/*for(int y=0;yheight;y++)
	{
		for(int x=0;xwidth-1));
		}
	}*/
	for (int y = 0;yheight;y++)
	{
		for(int x = Imdst->width-r;xwidth;x++)
		{
			cvSetReal2D(Imdst,y,x,cvGetReal2D(subImage,y,x-Imdst->width+r)-cvGetReal2D(imCum,y,x-r-1));
		}
	}
	cvReleaseMat(&subImage);

	return Imdst;
}

CvMat * myGuidedFilter_Mat(CvMat * I,CvMat *img_pp,int r, double eps)
{
	int height = img_pp->height;
	int width = img_pp->width;
	int type = CV_64FC1;

	CvMat *ones = cvCreateMat(height,width,type);
	cvSet(ones,cvRealScalar(1));
	CvMat * N = boxFilter(ones,r);

	//求I的均值
	CvMat * mean_I = cvCreateMat(height,width,type);
	cvDiv(boxFilter(I,r),N,mean_I);
	//求P的均值
	CvMat * mean_p = cvCreateMat(height,width,type);
	cvDiv(boxFilter(img_pp,r),N,mean_p);
	//求I*P的均值
	CvMat * pr = cvCreateMat(height,width,type);
	cvMul(I,img_pp,pr);
	CvMat * mean_Ip = cvCreateMat(height,width,type);
	cvDiv(boxFilter(pr,r),N,mean_Ip); 

	//求I与p协方差
	cvMul(mean_I,mean_p,pr);
	CvMat * cov_Ip = cvCreateMat(height,width,type);
	cvSub(mean_Ip,pr,cov_Ip);

	//求I的方差
	CvMat * var_I  = cvCreateMat(height,width,type);
	cvMul(I,I,pr);
	cvDiv(boxFilter(pr,r),N,var_I);
	cvMul(mean_I,mean_I,pr);
	cvSub(var_I,pr,var_I);
	
	//求a
	CvMat * a = cvCreateMat(height,width,type);
	cvAddS(var_I,cvScalar(eps),var_I);
	cvDiv(cov_Ip,var_I,a);
	//求b
	CvMat * b = cvCreateMat(height,width,type);
	cvMul(a,mean_I,pr);
	cvSub(mean_p,pr,b);
		 
	//求a的均值
	CvMat * mean_a = cvCreateMat(height,width,type);
	cvDiv(boxFilter(a,r),N,mean_a);
	//求b的均值
	CvMat * mean_b = cvCreateMat(height,width,type);
	cvDiv(boxFilter(b,r),N,mean_b);
		 
	//求Q
	CvMat * q = cvCreateMat(height,width,type);
	cvMul(mean_a,I,a);
	cvAdd(a,mean_b,q);
		 
	cvReleaseMat(&ones);
	cvReleaseMat(&mean_I);
	cvReleaseMat(&mean_p);
	cvReleaseMat(&pr);
	cvReleaseMat(&mean_Ip);
	cvReleaseMat(&cov_Ip);
	cvReleaseMat(&var_I);
	cvReleaseMat(&a);
	cvReleaseMat(&b);
	cvReleaseMat(&mean_a);
	cvReleaseMat(&mean_b);
	return q;
}

你可能感兴趣的:(Computer,Vision)