d D i v d z ( l , m , x , y ) = d D i v d Y ( l , m , x , y ) f ′ ( z ( l , m , x , y ) ) \frac{d D i v}{d z(l, m, x, y)}=\frac{d D i v}{d Y(l, m, x, y)} f^{\prime}(z(l, m, x, y)) dz(l,m,x,y)dDiv=dY(l,m,x,y)dDivf′(z(l,m,x,y))
Simple compont-wise computation
Each Y ( l − 1 , m , x , y ) Y(l-1,m,x,y) Y(l−1,m,x,y) affects several z ( l , n , x ′ , y ′ ) z(l,n,x\prime,y\prime) z(l,n,x′,y′) terms for every n n n (map)
Derivative w.r.t a specific y y y term
d D i v d Y ( l − 1 , m , x , y ) = ∑ n ∑ x ′ , y ′ d D i v d z ( l , n , x ′ , y ′ ) d z ( l , n , x ′ , y ′ ) d Y ( l − 1 , m , x , y ) \frac{d D i v}{d Y(l-1, m, x, y)}=\sum_{n} \sum_{x^{\prime}, y^{\prime}} \frac{d D i v}{d z\left(l, n, x^{\prime}, y^{\prime}\right)} \frac{d z\left(l, n, x^{\prime}, y^{\prime}\right)}{d Y(l-1, m, x, y)} dY(l−1,m,x,y)dDiv=n∑x′,y′∑dz(l,n,x′,y′)dDivdY(l−1,m,x,y)dz(l,n,x′,y′)
d D i v d Y ( l − 1 , m , x , y ) = ∑ n ∑ x ′ , y ′ d D i v d z ( l , n , x ′ , y ′ ) w l ( m , n , x − x ′ , y − y ′ ) \frac{d D i v}{d Y(l-1, m, x, y)}=\sum_{n} \sum_{x \prime, y^{\prime}} \frac{d D i v}{d z\left(l, n, x^{\prime}, y^{\prime}\right)} w_{l}\left(m, n, x-x^{\prime}, y-y^{\prime}\right) dY(l−1,m,x,y)dDiv=n∑x′,y′∑dz(l,n,x′,y′)dDivwl(m,n,x−x′,y−y′)
d D i v d w l ( m , n , x , y ) = ∑ x ′ , y ′ d D i v d z ( l , n , x ′ , y ′ ) d z ( l , n , x ′ , y ′ ) d w l ( m , n , x , y ) \frac{d D i v}{d w_{l}(m, n, x, y)}=\sum_{x^{\prime}, y^{\prime}} \frac{d D i v}{d z\left(l, n, x^{\prime}, y^{\prime}\right)} \frac{d z\left(l, n, x^{\prime}, y^{\prime}\right)}{d w_{l}(m, n, x, y)} dwl(m,n,x,y)dDiv=x′,y′∑dz(l,n,x′,y′)dDivdwl(m,n,x,y)dz(l,n,x′,y′)
d D i v d w l ( m , n , x , y ) = ∑ x ′ , y ′ d D i v d z ( l , n , x ′ , y ′ ) Y ( l − 1 , m , x ′ + x , y ′ + y ) \frac{d D i v}{d w_{l}(m, n, x, y)}=\sum_{x \prime, y^{\prime}} \frac{d D i v}{d z\left(l, n, x^{\prime}, y^{\prime}\right)} Y\left(l-1, m, x^{\prime}+x, y^{\prime}+y\right) dwl(m,n,x,y)dDiv=x′,y′∑dz(l,n,x′,y′)dDivY(l−1,m,x′+x,y′+y)
d D i v d Y ( l − 1 , m , x , y ) = ∑ n ∑ x ′ , y ′ d D i v d z ( l , n , x ′ , y ′ ) w l ( m , n , x − x ′ , y − y ′ ) \frac{d D i v}{d Y(l-1, m, x, y)}=\sum_{n} \sum_{x \prime, y^{\prime}} \frac{d D i v}{d z\left(l, n, x^{\prime}, y^{\prime}\right)} w_{l}\left(m, n, x-x^{\prime}, y-y^{\prime}\right) dY(l−1,m,x,y)dDiv=n∑x′,y′∑dz(l,n,x′,y′)dDivwl(m,n,x−x′,y−y′)
z shift ( l , n , m , x , y ) = z ( l , n , x − K + 1 , y − K + 1 ) z_{\text {shift}}(l, n, m, x, y)=z(l, n, x-K+1, y-K+1) zshift(l,n,m,x,y)=z(l,n,x−K+1,y−K+1)
∂ D i v ∂ y ( l − 1 , m , x , y ) = ∑ n ∑ x ′ , y ′ w ^ ( l , n , m , x ′ , y ′ ) ∂ D i v ∂ z s h i f t ( l , n , x + x ′ , y + y ′ ) \frac{\partial D i v}{\partial y(l-1, m, x, y)}=\sum_{n} \sum_{x^{\prime}, y^{\prime}} \widehat{w}\left(l, n, m, x^{\prime}, y^{\prime}\right) \frac{\partial D i v}{\partial z_{s h i f t}\left(l, n, x+x^{\prime}, y+y^{\prime}\right)} ∂y(l−1,m,x,y)∂Div=n∑x′,y′∑w (l,n,m,x′,y′)∂zshift(l,n,x+x′,y+y′)∂Div
KaTeX parse error: Got function '\newline' with no arguments as argument to '\left' at position 1: \̲n̲e̲w̲l̲i̲n̲e̲
d y ( l , m , k , n ) = 1 K l p o o l 2 d u ( l , m , k , n ) d y(l, m, k, n)=\frac{1}{K_{l p o o l}^{2}} d u(l, m, k, n) dy(l,m,k,n)=Klpool21du(l,m,k,n)
For CIFAR 10
For ILSVRC(Imagenet Large Scale Visual Recognition Challenge)
For ImageNet
Backprop Through Max-Pooling Layers? ↩︎
Up-sampling with Transposed Convolution ↩︎
https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html ↩︎