To The Max
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 8735 Accepted Submission(s): 4234
Problem Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1 x 1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
Input
The input consists of an N x N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N 2 integers separated by whitespace (spaces and newlines). These are the N 2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
Output
Output the sum of the maximal sub-rectangle.
Sample Input
4 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2
Sample Output
Source
Greater New York 2001
题意:
求出最大子矩阵的和
题解:
sum[i][j]表示第i行前j个元素的和,这样第i列到第j列之间的元素和就可以通过sum[k][j]-sum[k][i-1]算出来了,并看成一个元素,这样就成了n个元素的最大连续和(杭电1003题),枚举i,j就可以算出最大值。
代码:
#include
#include
#include
#include
using namespace std;
int sum[110][110];
int main()
{
int n;
while(~scanf("%d",&n))
{
int a,ans=-99999999;
// memset(sum,0,sizeof(sum));
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
scanf("%d",&a);
sum[i][j]=sum[i][j-1]+a;//第i行前j个元素之和
}
}
for(int i=1;i<=n;i++)
{
for(int j=i;j<=n;j++)
{
int temp=0;
for(int k=1;k<=n;k++)//第i列到第j列的情况,最大连续和算法
{
temp+=(sum[k][j]-sum[k][i-1]);
if(temp>ans)
ans=temp;
if(temp<0)
temp=0;
}
}
}
printf("%d\n",ans);
}
return 0;
}