- putty运行python代码_当我关闭putty时如何保持python脚本运行
weixin_39943000
putty运行python代码
我准备在VPS上运行Ubuntu上的python脚本.这是机器学习培训过程,因此需要花费大量时间进行培训.如何在不停止该过程的情况下关闭腻子.解决方法:您有两个主要选择:>使用nohup运行命令.这会将它与您的会话取消关联,并在断开连接后让它继续运行:nohuppythonScript.py请注意,该命令的stdout将附加到名为nohup.out的文件中,除非您重定向它(nohuppythonS
- 同一个问题看看Grok3怎么回答-什么是智能体?
释迦呼呼
AI一千问架构深度学习人工智能机器学习自然语言处理
关键要点研究表明,智能体(可能是“智能代理”的意思)在人工智能中是一个能够感知环境、自主行动以实现目标的系统。证据倾向于认为,智能体可以是简单的(如恒温器),也可以是复杂的(如自动驾驶汽车),并可能通过机器学习改进性能。关于“智能体”这一术语,存在争议,可能指的是人工智能中的智能代理,或在某些上下文中指具有物理身体的AI系统(如机器人)。什么是智能体?定义智能体在人工智能中似乎是一个能够感知其环境
- 决策树(Decision Tree):机器学习中的经典算法
Jason_Orton
机器学习算法决策树随机森林人工智能
1.什么是决策树?决策树(DecisionTree)是一种基于树形结构的机器学习算法,适用于分类和回归任务。其核心思想是通过一系列的规则判断,将数据集不断划分,最终形成一棵树状结构,从而实现预测目标。在决策树中,每个内部节点表示一个特征,每个分支代表一个特征的取值,每个叶子节点对应一个类别或预测值。决策树的目标是构建一棵能够有效区分不同类别的树,并在测试数据上保持较好的泛化能力。2.决策树的工作原
- 学习总结项目
苏小夕夕
学习人工智能深度学习机器学习
近段时间学习了机器学习、线性回归和softmax回归、多层感知机、卷积神经网络、Pytorch神经网络工具箱、Python数据处理工具箱、图像分类等的知识,学习了利用神经网络实现cifar10的操作、手写图像识别项目以及其对应的实验项目报告总结。项目总结本次项目我使用了VGG19模型、AlexNet模型和已使用的VGG16模型进行对比,在已有的条件下,对代码进行更改是,结果展示中,VGG19模型的
- 深度学习和机器学习的差异
The god of big data
教程深度学习机器学习人工智能
一、技术架构的本质差异传统机器学习(MachineLearning)建立在统计学和数学优化基础之上,其核心技术是通过人工设计的特征工程(FeatureEngineering)构建模型。以支持向量机(SVM)为例,算法通过核函数将数据映射到高维空间,但特征提取完全依赖工程师的领域知识。这种"人工特征+浅层模型"的结构在面对复杂非线性关系时容易遭遇性能瓶颈。深度学习(DeepLearning)作为机器
- PyBroker: 使用Python进行机器学习驱动的算法交易指南
任铃冰Flourishing
PyBroker:使用Python进行机器学习驱动的算法交易指南pybrokerAlgorithmicTradinginPythonwithMachineLearning项目地址:https://gitcode.com/gh_mirrors/py/pybroker一、项目目录结构及介绍PyBroker项目遵循了清晰的组织结构来简化其源码管理和维护。以下是该仓库的主要目录及其简介:├──docs#文
- 从前端程序员到大模型工程师的转型攻略
七七Seven~
前端语言模型人工智能学习chatgpt算法
在科技日新月异的今天,人工智能(AI)特别是大规模预训练模型(大模型)的发展正引领着新一轮的技术革命。对于一位有志于从专注于用户界面设计和开发的前端程序员转向这个充满潜力领域的专业人士来说,这不仅是一次技术栈的转换,更是一个思维方式和个人职业发展的重大转变。本文将提供一个详尽的指南,帮助你顺利地完成这一过渡。第一阶段:打牢基础(第1-4周)深入了解AI与机器学习概念理解:阅读相关书籍、在线课程或观
- PyBroker:利用 Python 和机器学习助力算法交易
skywalk8163
人工智能编程语言量化分析python机器学习算法
PyBroker:利用Python和机器学习助力算法交易你是否希望借助Python和机器学习的力量来优化你的交易策略?那么你需要了解一下PyBroker!这个Python框架专为开发算法交易策略而设计,尤其关注使用机器学习的策略。借助PyBroker,你可以轻松创建和微调交易规则,构建强大的模型,并深入了解你的策略表现。PyBroker介绍官方说明文档:利用PyBroker进行量化投资官方说明文档
- Java 中操作 R:深度整合与高效应用
froginwe11
开发语言
Java中操作R:深度整合与高效应用引言随着大数据和机器学习的快速发展,R语言在数据分析和可视化方面扮演着越来越重要的角色。而Java作为一种广泛应用于企业级应用开发的语言,其强大的功能和稳定性使其成为构建高性能应用的首选。本文将探讨Java如何操作R语言,实现高效的数据分析应用。一、Java操作R的背景R语言优势:R语言拥有丰富的统计分析、数据可视化工具和机器学习算法库,是数据分析领域的首选语言
- 大话机器学习三大门派:监督、无监督与强化学习
安意诚Matrix
机器学习笔记机器学习人工智能
以武侠江湖为隐喻,系统阐述了机器学习的三大范式:监督学习(少林派)凭借标注数据精准建模,擅长图像分类等预测任务;无监督学习(逍遥派)通过数据自组织发现隐藏规律,在生成对抗网络(GAN)等场景大放异彩;强化学习(明教)依托动态环境交互优化策略,驱动AlphaGo、自动驾驶等突破性应用。文章融合技术深度与江湖趣味,既解析了CNN、PCA、Q-learning等核心算法的"武功心法"(数学公式与代码实现
- 从零开始学机器学习——什么是机器学习
努力的小雨
机器学习机器学习人工智能
这个系列的文章旨在为初学者提供机器学习知识,避免使用专业术语和复杂的概念,以便更好地理解和应用。首先给大家介绍一个很好用的学习地址:https://cloudstudio.net/columns机器学习在这里简要介绍机器学习:它利用真实世界或生成的数据,自动发现其中的规律和模式,从而实现对未来情况的预测。机器学习(ML)作为人工智能的重要子领域,专注于运用特定的算法发现有意义的信息,并从感知数据中
- 《基于机器学习的DDoS攻击检测与防御系统设计与实现》开题报告
大数据蟒行探索者
毕业论文/研究报告机器学习ddos人工智能安全网络web安全
目录一、课题的研究目的和意义1.1课题背景1.2课题目的(1)提高DDoS攻击检测的准确性(2)加强DDoS攻击的防御能力(3)提升网络安全防护的技术水平1.3课题意义(1)理论意义(2)实践意义二、国内(外)研究现状及分析2.1国内研究现状2.2国外研究现状2.3总结回顾三、课题主要研究内容及可行性分析3.1课题主要内容3.2可行性分析(1)技术成熟度与应用前景(2)数据处理能力四、研究方案和技
- 手机租赁平台开发核心技术解析
红点聊租赁
其他
内容概要在开发手机租赁平台这件事上,技术团队就像在组装一台精密仪器——每个齿轮的咬合都关乎整台机器的运转效率。信用免押系统是这台仪器的核心动力舱,它需要区块链存证技术扮演"数字保镖",用分布式账本给每笔交易打上防伪钢印;而智能风控模型则化身"AI侦探",通过机器学习在用户行为数据里嗅出潜在风险。不过千万别以为技术堆砌就能高枕无忧,关键是如何让这些模块像交响乐团般默契配合:建议企业先绘制清晰的业务流
- 震撼揭秘!打造吸引招聘者的机器学习作品集终极指南!
真智AI
机器学习人工智能python后端java
如何创建一个脱颖而出的机器学习作品集在当今竞争激烈的就业市场中,打造一个强大的机器学习作品集比以往任何时候都更重要。这不仅仅是列出你的技能,更是要展示你的实际能力。一个精心制作的作品集可以让雇主清楚地了解你的技术专长、解决问题的能力以及你对该领域的热情。无论你是初学者还是经验丰富的专业人士,作品集都是你脱颖而出并留下深刻印象的关键。在本指南中,我们将带你深入了解如何打造一个既能展示技能,又能助你获
- python 支持向量机回归_深入浅出python机器学习---支持向量机SVM 笔记0114-2020
weixin_39864387
python支持向量机回归
题前故事:小D最近也交了一个女朋友,但是这个女孩好像非常情绪化,喜怒无常,让小D捉摸不透,小D女朋友的情绪完全不是“线性可分”的,于是小D想到了SVM算法,也就是大名鼎鼎的一一支持向量机。支持向量机理解引入首先需要知道线性可分和线性不可分的概念我们提取样本特征是“是否有妹子”和“是否有好吃的”这两项的时候,能够很容易用图中的直线把男生的情绪分成“开心”和“不开心”两类,这种情况下我们说样本是线性可
- 基于文本特征的微博谣言检测
机器懒得学习
人工智能大数据图像处理计算机视觉
随着社交媒体的普及,微博等平台成为了信息传播的重要渠道。然而,虚假信息和谣言的传播也带来了严重的社会问题。因此,自动化的谣言检测技术变得尤为重要。本文将介绍如何基于文本特征,使用深度学习模型(如LSTM、CNN)和传统机器学习模型(如SVM)来实现微博谣言检测,并对这些模型的性能进行比较。完整项目地址:基于文本特征的微博谣言检测1.项目概述本项目旨在通过分析微博文本内容,自动检测其中的谣言。系统通
- 基于机器学习的恶意软件检测系统的详细设计与实现
源码空间站11
机器学习人工智能课程设计python网络安全信息安全恶意软件检测
以下是一个基于机器学习的恶意软件检测系统的详细设计与实现,适合作为课程作业或项目开发。我们将实现一个通过机器学习模型分析恶意软件特征来检测文件是否为恶意软件的系统。总体思路数据准备:选择现有的恶意软件数据集(如Kaggle的恶意软件数据集)或构造模拟数据集。数据集中包含文件的特征(如二进制特征、字符串特征、API调用特征等)和标签("恶意"或"正常")。特征提取:提取文件的静态特征(如文件大小、字
- AI Agent: AI的下一个风口 从图形用户界面到自然语言的进化
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
AIAgent:AI的下一个风口从图形用户界面到自然语言的进化文章目录AIAgent:AI的下一个风口从图形用户界面到自然语言的进化1.背景介绍1.1人机交互的演变历程1.1.1命令行界面时代1.1.2图形用户界面时代1.1.3自然语言交互的兴起1.2AI技术的发展现状1.2.1机器学习和深度学习的突破1.2.2自然语言处理技术的进步1.2.3知识图谱和语义理解的发展1.3AIAgent的概念与意
- 基于PyTorch的深度学习4——使用numpy实现机器学习vs使用Tensor及Antograd实现机器学习
Wis4e
深度学习机器学习pytorch
首先,给出一个数组x,然后基于表达式y=3x2+2,加上一些噪音数据到达另一组数据y。然后,构建一个机器学习模型,学习表达式y=wx2+b的两个参数w、b。利用数组x,y的数据为训练数据。最后,采用梯度梯度下降法,通过多次迭代,学习到w、b的值。以下为具体步骤:1)导入需要的库。importnumpyasnp%matplotlibinlinefrommatplotlibimportpyplotas
- 如何成为LangChain项目的贡献者
eahba
langchaineasyui前端python
技术背景介绍LangChain是一个开源项目,致力于处理自然语言处理和生成任务。随着AI和机器学习领域的快速发展,LangChain项目的更新速度也很快。此项目欢迎社区的参与,无论是新功能、基础设施改进、文档提升还是Bug修复,都在积极寻求贡献。核心原则解析参与开源项目不仅能提升个人技能,还能为社区带来价值。对LangChain的贡献包括但不限于以下几个方面:文档改进:帮助改善项目文档,以便新人和
- Python开发农村青年婚恋appq (实操)
Geeker-2025
python
开发一款农村青年婚恋APP是一个复杂且具有挑战性的项目。该应用需要整合用户管理、匹配算法、实时通信、数据分析等多个功能模块,并确保系统的安全性、稳定性和用户体验。使用Python开发可以充分利用其在数据处理、机器学习和Web开发方面的优势,构建一个高性能、可扩展且功能丰富的应用。以下是一个高层次的设计概述,涵盖主要的技术栈和功能模块,并提供使用Python开发的示例。##技术栈概述###前端-**
- 核函数及其常见类型
Shockang
机器学习数学通关指南机器学习人工智能数学线性代数概率统计
前言本文隶属于专栏《机器学习数学通关指南》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!本专栏目录结构和参考文献请见《机器学习数学通关指南》正文核心概念核函数(KernelFunction)是机器学习中处理非线性可分数据的关键工具。它的核心思想是隐式映射:通过将数据从原始低维空间映射到高维空间,使得在高维空间中线性可分,从而无需显式计算高维映射,仅需在低维空间高效计算
- PyTorch 学习路线
gorgor在码农
#python入门基础pythonpytorch
学习PyTorch需要结合理论理解和实践编码,逐步掌握其核心功能和实际应用。以下是分阶段的学习路径和资源推荐,适合从入门到进阶:1.基础知识准备前提条件Python基础:熟悉Python语法(变量、函数、类、模块等)。数学基础:了解线性代数、微积分、概率论(深度学习的基础)。机器学习基础:理解神经网络、损失函数、优化器(如梯度下降)等概念。学习资源Python入门:Python官方教程机器学习基础
- 机器学习篇——决策树基础
巷955
机器学习算法决策树
引言:决策树是一种常见的机器学习算法,广泛应用于分类和回归任务。它通过树状结构表示决策过程,每个内部节点代表一个特征测试,每个分支代表一个可能的测试结果,而每个叶节点则代表一个类别或回归值。本文将详细介绍决策树的原理、构建过程、优缺点以及实际应用。1.决策树的基本概念1.1什么是决策树?决策树是一种监督学习算法,主要用于分类和回归任务。它通过递归地将数据集划分为更小的子集,最终生成一棵树状结构。决
- 无监督AI训练:机遇与挑战并存
AI天才研究院
计算ChatGPTDeepSeekR1&大数据AI人工智能大模型javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
无监督AI训练:机遇与挑战并存关键词:无监督学习、AI训练、机器学习、聚类算法、降维技术、深度学习摘要:本文深入探讨无监督AI训练这一新兴领域,首先介绍了其基本概念与原理,然后详细解析了无监督AI训练的核心技术,如聚类算法和降维技术,以及无监督深度学习。接着,本文通过实际项目案例分析,展示了无监督AI训练的应用实践。最后,本文分析了无监督AI训练面临的挑战,并展望了其未来发展趋势。通过本文的阅读,
- PyTorch:Python深度学习框架使用详解
零 度°
pythonpython深度学习pytorch
PyTorch是一个开源的机器学习库,广泛用于计算机视觉和自然语言处理领域。它由Facebook的AI研究团队开发,因其动态计算图、易用性以及与Python的紧密集成而受到开发者的青睐。PyTorch的主要特点动态计算图:PyTorch的计算图在运行时构建,使得模型的修改和调试更加灵活。自动微分:自动计算梯度,简化了机器学习模型的训练过程。丰富的API:提供了丰富的神经网络层、函数和损失函数。跨平
- python | flower,一个强大的 Python 库!
双木的木
python拓展学习python库python开发语言计算机视觉人工智能算法联邦学习深度学习
本文来源公众号“python”,仅用于学术分享,侵权删,干货满满。原文链接:flower,一个强大的Python库!大家好,今天为大家分享一个强大的Python库-flower。Github地址:https://github.com/mher/flower随着机器学习模型应用的增长,联邦学习(FederatedLearning,FL)逐渐成为一个重要方向。联邦学习允许多个客户端在不共享原始数据的情
- 【开源项目】2024最新PHP在线客服系统源码/带预知消息/带搭建教程
于飞SEO
免费资源分享开源php开发语言
简介随着人工智能技术的飞速发展,AI驱动的在线客服系统已经成为企业提升客户服务质量和效率的重要工具。本文将探讨AI在线客服系统的理论基础,并展示如何使用PHP语言实现一个简单的AI客服系统。源码仓库地址:ym.fzapp.top在线客服系统的理论基础AI在线客服系统通过自然语言处理(NLP)、机器学习(ML)和深度学习(DL)技术,能够理解和响应客户的查询。这些系统通常包括以下几个关键组件:自然语
- ChatGPT-4o引领医学革命:临床科研创新与效率的新纪元
小艳加油
教程语言类人工智能数据分析ChatGPT-4o临床医学
2024年5月12日,更强版本的ChatGPT-4o上线,文本、语音、图像等多模态交互方式使其在各行各业的应用呈现了更多的可能性。因此,帮助广大临床医学相关的医院管理人员、医生、学生、科研人员更加熟练地掌握ChatGPT-4o在临床医学日常生活、工作与学习、课题申报、论文选题、实验方案设计、实验数据统计分析与可视化等方面的强大功能,同时更加系统地学习人工智能(包括传统机器学习、深度学习等)的基础理
- 电机的声音数据进行AI分析
鹿屿二向箔
人工智能
对电机的声音数据进行分析,尤其是当数据来源于加速度传感器时,涉及到的不仅仅是声音分析,还包含了振动分析。这类问题通常可以归类于机械故障诊断或预测性维护领域。以下是一些适合处理这种类型数据的人工智能模型和方法:1.特征工程+传统机器学习模型在直接应用深度学习之前,通常首先会进行特征提取。对于振动信号(即使通过加速度传感器采集),常用的方法包括计算频域特征(如傅里叶变换后的频谱)、时域特征(如均方根值
- 遍历dom 并且存储(将每一层的DOM元素存在数组中)
换个号韩国红果果
JavaScripthtml
数组从0开始!!
var a=[],i=0;
for(var j=0;j<30;j++){
a[j]=[];//数组里套数组,且第i层存储在第a[i]中
}
function walkDOM(n){
do{
if(n.nodeType!==3)//筛选去除#text类型
a[i].push(n);
//con
- Android+Jquery Mobile学习系列(9)-总结和代码分享
白糖_
JQuery Mobile
目录导航
经过一个多月的边学习边练手,学会了Android基于Web开发的毛皮,其实开发过程中用Android原生API不是很多,更多的是HTML/Javascript/Css。
个人觉得基于WebView的Jquery Mobile开发有以下优点:
1、对于刚从Java Web转型过来的同学非常适合,只要懂得HTML开发就可以上手做事。
2、jquerym
- impala参考资料
dayutianfei
impala
记录一些有用的Impala资料
1. 入门资料
>>官网翻译:
http://my.oschina.net/weiqingbin/blog?catalog=423691
2. 实用进阶
>>代码&架构分析:
Impala/Hive现状分析与前景展望:http
- JAVA 静态变量与非静态变量初始化顺序之新解
周凡杨
java静态非静态顺序
今天和同事争论一问题,关于静态变量与非静态变量的初始化顺序,谁先谁后,最终想整理出来!测试代码:
import java.util.Map;
public class T {
public static T t = new T();
private Map map = new HashMap();
public T(){
System.out.println(&quo
- 跳出iframe返回外层页面
g21121
iframe
在web开发过程中难免要用到iframe,但当连接超时或跳转到公共页面时就会出现超时页面显示在iframe中,这时我们就需要跳出这个iframe到达一个公共页面去。
首先跳转到一个中间页,这个页面用于判断是否在iframe中,在页面加载的过程中调用如下代码:
<script type="text/javascript">
//<!--
function
- JAVA多线程监听JMS、MQ队列
510888780
java多线程
背景:消息队列中有非常多的消息需要处理,并且监听器onMessage()方法中的业务逻辑也相对比较复杂,为了加快队列消息的读取、处理速度。可以通过加快读取速度和加快处理速度来考虑。因此从这两个方面都使用多线程来处理。对于消息处理的业务处理逻辑用线程池来做。对于加快消息监听读取速度可以使用1.使用多个监听器监听一个队列;2.使用一个监听器开启多线程监听。
对于上面提到的方法2使用一个监听器开启多线
- 第一个SpringMvc例子
布衣凌宇
spring mvc
第一步:导入需要的包;
第二步:配置web.xml文件
<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5"
xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi=
- 我的spring学习笔记15-容器扩展点之PropertyOverrideConfigurer
aijuans
Spring3
PropertyOverrideConfigurer类似于PropertyPlaceholderConfigurer,但是与后者相比,前者对于bean属性可以有缺省值或者根本没有值。也就是说如果properties文件中没有某个bean属性的内容,那么将使用上下文(配置的xml文件)中相应定义的值。如果properties文件中有bean属性的内容,那么就用properties文件中的值来代替上下
- 通过XSD验证XML
antlove
xmlschemaxsdvalidationSchemaFactory
1. XmlValidation.java
package xml.validation;
import java.io.InputStream;
import javax.xml.XMLConstants;
import javax.xml.transform.stream.StreamSource;
import javax.xml.validation.Schem
- 文本流与字符集
百合不是茶
PrintWrite()的使用字符集名字 别名获取
文本数据的输入输出;
输入;数据流,缓冲流
输出;介绍向文本打印格式化的输出PrintWrite();
package 文本流;
import java.io.FileNotFound
- ibatis模糊查询sqlmap-mapping-**.xml配置
bijian1013
ibatis
正常我们写ibatis的sqlmap-mapping-*.xml文件时,传入的参数都用##标识,如下所示:
<resultMap id="personInfo" class="com.bijian.study.dto.PersonDTO">
<res
- java jvm常用命令工具——jdb命令(The Java Debugger)
bijian1013
javajvmjdb
用来对core文件和正在运行的Java进程进行实时地调试,里面包含了丰富的命令帮助您进行调试,它的功能和Sun studio里面所带的dbx非常相似,但 jdb是专门用来针对Java应用程序的。
现在应该说日常的开发中很少用到JDB了,因为现在的IDE已经帮我们封装好了,如使用ECLI
- 【Spring框架二】Spring常用注解之Component、Repository、Service和Controller注解
bit1129
controller
在Spring常用注解第一步部分【Spring框架一】Spring常用注解之Autowired和Resource注解(http://bit1129.iteye.com/blog/2114084)中介绍了Autowired和Resource两个注解的功能,它们用于将依赖根据名称或者类型进行自动的注入,这简化了在XML中,依赖注入部分的XML的编写,但是UserDao和UserService两个bea
- cxf wsdl2java生成代码super出错,构造函数不匹配
bitray
super
由于过去对于soap协议的cxf接触的不是很多,所以遇到了也是迷糊了一会.后来经过查找资料才得以解决. 初始原因一般是由于jaxws2.2规范和jdk6及以上不兼容导致的.所以要强制降为jaxws2.1进行编译生成.我们需要少量的修改:
我们原来的代码
wsdl2java com.test.xxx -client http://.....
修改后的代
- 动态页面正文部分中文乱码排障一例
ronin47
公司网站一部分动态页面,早先使用apache+resin的架构运行,考虑到高并发访问下的响应性能问题,在前不久逐步开始用nginx替换掉了apache。 不过随后发现了一个问题,随意进入某一有分页的网页,第一页是正常的(因为静态化过了);点“下一页”,出来的页面两边正常,中间部分的标题、关键字等也正常,唯独每个标题下的正文无法正常显示。 因为有做过系统调整,所以第一反应就是新上
- java-54- 调整数组顺序使奇数位于偶数前面
bylijinnan
java
import java.util.Arrays;
import java.util.Random;
import ljn.help.Helper;
public class OddBeforeEven {
/**
* Q 54 调整数组顺序使奇数位于偶数前面
* 输入一个整数数组,调整数组中数字的顺序,使得所有奇数位于数组的前半部分,所有偶数位于数组的后半
- 从100PV到1亿级PV网站架构演变
cfyme
网站架构
一个网站就像一个人,存在一个从小到大的过程。养一个网站和养一个人一样,不同时期需要不同的方法,不同的方法下有共同的原则。本文结合我自已14年网站人的经历记录一些架构演变中的体会。 1:积累是必不可少的
架构师不是一天练成的。
1999年,我作了一个个人主页,在学校内的虚拟空间,参加了一次主页大赛,几个DREAMWEAVER的页面,几个TABLE作布局,一个DB连接,几行PHP的代码嵌入在HTM
- [宇宙时代]宇宙时代的GIS是什么?
comsci
Gis
我们都知道一个事实,在行星内部的时候,因为地理信息的坐标都是相对固定的,所以我们获取一组GIS数据之后,就可以存储到硬盘中,长久使用。。。但是,请注意,这种经验在宇宙时代是不能够被继续使用的
宇宙是一个高维时空
- 详解create database命令
czmmiao
database
完整命令
CREATE DATABASE mynewdb USER SYS IDENTIFIED BY sys_password USER SYSTEM IDENTIFIED BY system_password LOGFILE GROUP 1 ('/u01/logs/my/redo01a.log','/u02/logs/m
- 几句不中听却不得不认可的话
datageek
1、人丑就该多读书。
2、你不快乐是因为:你可以像猪一样懒,却无法像只猪一样懒得心安理得。
3、如果你太在意别人的看法,那么你的生活将变成一件裤衩,别人放什么屁,你都得接着。
4、你的问题主要在于:读书不多而买书太多,读书太少又特爱思考,还他妈话痨。
5、与禽兽搏斗的三种结局:(1)、赢了,比禽兽还禽兽。(2)、输了,禽兽不如。(3)、平了,跟禽兽没两样。结论:选择正确的对手很重要。
6
- 1 14:00 PHP中的“syntax error, unexpected T_PAAMAYIM_NEKUDOTAYIM”错误
dcj3sjt126com
PHP
原文地址:http://www.kafka0102.com/2010/08/281.html
因为需要,今天晚些在本机使用PHP做些测试,PHP脚本依赖了一堆我也不清楚做什么用的库。结果一跑起来,就报出类似下面的错误:“Parse error: syntax error, unexpected T_PAAMAYIM_NEKUDOTAYIM in /home/kafka/test/
- xcode6 Auto layout and size classes
dcj3sjt126com
ios
官方GUI
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/AutolayoutPG/Introduction/Introduction.html
iOS中使用自动布局(一)
http://www.cocoachina.com/ind
- 通过PreparedStatement批量执行sql语句【sql语句相同,值不同】
梦见x光
sql事务批量执行
比如说:我有一个List需要添加到数据库中,那么我该如何通过PreparedStatement来操作呢?
public void addCustomerByCommit(Connection conn , List<Customer> customerList)
{
String sql = "inseret into customer(id
- 程序员必知必会----linux常用命令之十【系统相关】
hanqunfeng
Linux常用命令
一.linux快捷键
Ctrl+C : 终止当前命令
Ctrl+S : 暂停屏幕输出
Ctrl+Q : 恢复屏幕输出
Ctrl+U : 删除当前行光标前的所有字符
Ctrl+Z : 挂起当前正在执行的进程
Ctrl+L : 清除终端屏幕,相当于clear
二.终端命令
clear : 清除终端屏幕
reset : 重置视窗,当屏幕编码混乱时使用
time com
- NGINX
IXHONG
nginx
pcre 编译安装 nginx
conf/vhost/test.conf
upstream admin {
server 127.0.0.1:8080;
}
server {
listen 80;
&
- 设计模式--工厂模式
kerryg
设计模式
工厂方式模式分为三种:
1、普通工厂模式:建立一个工厂类,对实现了同一个接口的一些类进行实例的创建。
2、多个工厂方法的模式:就是对普通工厂方法模式的改进,在普通工厂方法模式中,如果传递的字符串出错,则不能正确创建对象,而多个工厂方法模式就是提供多个工厂方法,分别创建对象。
3、静态工厂方法模式:就是将上面的多个工厂方法模式里的方法置为静态,
- Spring InitializingBean/init-method和DisposableBean/destroy-method
mx_xiehd
javaspringbeanxml
1.initializingBean/init-method
实现org.springframework.beans.factory.InitializingBean接口允许一个bean在它的所有必须属性被BeanFactory设置后,来执行初始化的工作,InitialzingBean仅仅指定了一个方法。
通常InitializingBean接口的使用是能够被避免的,(不鼓励使用,因为没有必要
- 解决Centos下vim粘贴内容格式混乱问题
qindongliang1922
centosvim
有时候,我们在向vim打开的一个xml,或者任意文件中,拷贝粘贴的代码时,格式莫名其毛的就混乱了,然后自己一个个再重新,把格式排列好,非常耗时,而且很不爽,那么有没有办法避免呢? 答案是肯定的,设置下缩进格式就可以了,非常简单: 在用户的根目录下 直接vi ~/.vimrc文件 然后将set pastetoggle=<F9> 写入这个文件中,保存退出,重新登录,
- netty大并发请求问题
tianzhihehe
netty
多线程并发使用同一个channel
java.nio.BufferOverflowException: null
at java.nio.HeapByteBuffer.put(HeapByteBuffer.java:183) ~[na:1.7.0_60-ea]
at java.nio.ByteBuffer.put(ByteBuffer.java:832) ~[na:1.7.0_60-ea]
- Hadoop NameNode单点问题解决方案之一 AvatarNode
wyz2009107220
NameNode
我们遇到的情况
Hadoop NameNode存在单点问题。这个问题会影响分布式平台24*7运行。先说说我们的情况吧。
我们的团队负责管理一个1200节点的集群(总大小12PB),目前是运行版本为Hadoop 0.20,transaction logs写入一个共享的NFS filer(注:NetApp NFS Filer)。
经常遇到需要中断服务的问题是给hadoop打补丁。 DataNod