四元数求导

补充知识:
q a ⊗ q b = R ( q b ) q a = [ s b z b − y b x b − z b s b x b y b y b − x b s b z b − x b − y b − z b s b ] [ x a y a z a s a ] q_a \otimes q_b = R(q_b)q_a=\left[\begin{array}{cccc} {s_{b}} & {z_{b}} & {-y_{b}} & {x_{b}} \\ {-z_{b}} & {s_{b}} & {x_{b}} & {y_{b}} \\ {y_{b}} & {-x_{b}} & {s_{b}} & {z_{b}} \\ {-x_{b}} & {-y_{b}} & {-z_{b}} & {s_{b}} \end{array}\right]\left[\begin{array}{c} {x_{a}} \\ {y_{a}} \\ {z_{a}} \\ {s_{a}} \end{array}\right] qaqb=R(qb)qa=sbzbybxbzbsbxbybybxbsbzbxbybzbsbxayazasa
R ( q b ) = Ω ( w ) + s I = [ − ω ∧ ω − ω T 0 ] + s I R(q_b)= \Omega(w)+sI=\left[\begin{array}{ll} {-\omega^{\wedge}} & {\omega} \\ {-\omega^{T}} & {0} \end{array}\right]+s I R(qb)=Ω(w)+sI=[ωωTω0]+sI
四元数求导_第1张图片
四元数求导_第2张图片
四元数求导_第3张图片

你可能感兴趣的:(SLAM)