给出一个序列,求[l, r]中的最大连续 xor 和。
强制在线
先把整个序列分成 n √ 块,预处理每一块的开头到每个数字的最大连续 xor 和。这个我们只需处理出前缀 xor 和,之后用可持久化Trie树就可以搞定。这样询问的右边就是整块的了。剩下左边的随便暴力一下就能过了。。
#define _CRT_SECURE_NO_WARNINGS
#include
#include
#include
#include
#include
#define MAX 15000
using namespace std;
int cnt, asks;
int src[MAX];
int blocks, size;
int belong[MAX];
int st[MAX], ed[MAX];
struct Trie{
Trie *son[2];
int cnt;
}mempool[MAX * 100], *C = mempool;
Trie *trie[MAX], **tree = trie + 1;
Trie *NewTrie(Trie *_, Trie *__, int ___)
{
C->son[0] = _;
C->son[1] = __;
C->cnt = ___;
return C++;
}
Trie *Insert(Trie *consult, int c, int deep)
{
if(!deep)
return NewTrie(NULL, NULL, consult->cnt + 1);
if(!(~c&deep))
return NewTrie(consult->son[0], Insert(consult->son[1], c, deep >> 1), consult->cnt + 1);
else
return NewTrie(Insert(consult->son[0], c, deep >> 1), consult->son[1], consult->cnt + 1);
}
int GetMax(Trie *l, Trie *r, int x, int deep)
{
if(!deep)
return 0;
bool dir = x&deep ? 0:1;
if(r->son[dir]->cnt - l->son[dir]->cnt)
return deep + GetMax(l->son[dir], r->son[dir], x,deep >> 1);
else
return GetMax(l->son[!dir], r->son[!dir], x, deep >> 1);
}
int ans[120][MAX];
int main()
{
cin >> cnt >> asks;
for(int i = 1; i <= cnt; ++i) {
scanf("%d", &src[i]);
src[i] ^= src[i - 1];
}
size = sqrt(cnt + 1);
memset(st, -1, sizeof(st));
for(int i = 0; i <= cnt; ++i) {
belong[i] = i / size;
if(st[belong[i]] == -1)
st[belong[i]] = i;
ed[belong[i]] = i;
}
blocks = belong[cnt];
tree[-1] = NewTrie(C, C, 0);
tree[0] = Insert(tree[-1], 0, 1 << 30);
for(int i = 1; i <= cnt; ++i)
tree[i] = Insert(tree[i - 1], src[i], 1 << 30);
for(int i = 0; i <= blocks; ++i)
for(int j = st[i]; j <= cnt; ++j)
ans[i][j] = max(GetMax(tree[st[i] - 1], tree[j], src[j], 1 << 30), j ? ans[i][j - 1] : 0);
int last_ans = 0;
for(int x, y, i = 1; i <= asks; ++i) {
scanf("%d%d", &x, &y);
x = ((long long)x + last_ans) % cnt + 1;
y = ((long long)y + last_ans) % cnt + 1;
if(x > y) swap(x, y);
--x;
int t = belong[x] + 1;
last_ans = ans[t][y];
for(int j = min(st[t] - 1, y); j >= x; --j)
last_ans = max(last_ans, GetMax(tree[x - 1], tree[y], src[j], 1 << 30));
printf("%d\n", last_ans);
}
return 0;
}