文件目录
FDDB文件存放fddb数据集:
这里不做说明。
config.py:
# config.py
cfg_mnet = {
'name': 'mobilenet0.25',
'min_sizes': [[16, 32], [64, 128], [256, 512]],
'steps': [8, 16, 32],##步幅与论文中有所不同
'variance': [0.1, 0.2],##方差
'clip': False,##梯度消失和梯度爆炸
'loc_weight': 2.0,
'gpu_train': True,
'batch_size': 32,#批大小
'ngpu': 1,
'epoch': 250,#单次epoch的迭代次数减少,提高运行速度。(单次epoch=(全部训练样本/batchsize)/iteration=1)
'decay1': 190,
'decay2': 220,#衰变
'image_size': 640,
'pretrain': True,
'return_layers': {'stage1': 1, 'stage2': 2, 'stage3': 3},
'in_channel': 32,#输入通道
'out_channel': 64#输出通道
}
cfg_re50 = {
'name': 'Resnet50',
'min_sizes': [[16, 32], [64, 128], [256, 512]],
'steps': [8, 16, 32],
'variance': [0.1, 0.2],
'clip': False,
'loc_weight': 2.0,
'gpu_train': True,
'batch_size': 24,
'ngpu': 4,
'epoch': 100,
'decay1': 70,
'decay2': 90,
'image_size': 840,
'pretrain': True,
'return_layers': {'layer2': 1, 'layer3': 2, 'layer4': 3},
'in_channel': 256,
'out_channel': 256
}
这个文件是一些网络配置与超参数。
data_augment.py
import cv2
import numpy as np
import random
from utils.box_utils import matrix_iof
"""
训练过程中如果要做到多张图片一起训练需要保持每张图片的大小一致,且与网络的输入层尺寸一致,即训练过程中所有图片的大小均为640×640×3。
"""
def _crop(image, boxes, labels, landm, img_dim):
height, width, _ = image.shape
pad_image_flag = True
for _ in range(250):#最大重复裁剪250次,直到某次裁剪合格
"""
if random.uniform(0, 1) <= 0.2:
scale = 1.0
else:
scale = random.uniform(0.3, 1.0)
训练数据集的准备引入了数据增强的策略,对于图片做不同尺度的缩放,图片的基准尺寸用的是网络的输入大小640,首先将输入图片较短的维度缩放成基础尺寸640, 在此基础上根据PRE_SCALES = [0.3, 0.45, 0.6, 0.8, 1.0]再进行缩放,每张图片都会随机匹配一个PRE_SCALE,将图像短边缩放成640 / PRE_SCALE, 即图像的短边尺寸的取值包括[640, 800, 1067, 1422, 2133]
"""
PRE_SCALES = [0.3, 0.45, 0.6, 0.8, 1.0]
scale = random.choice(PRE_SCALES)
short_side = min(width, height)
w = int(scale * short_side)
h = w
if width == w:
l = 0
else:
l = random.randrange(width - w)
if height == h:
t = 0
else:
t = random.randrange(height - h)
roi = np.array((l, t, l + w, t + h))#剪裁后的roi
value = matrix_iof(boxes, roi[np.newaxis])
flag = (value >= 1)
if not flag.any():
continue
## 仅保留GT中心在img_n的img_n,若没有,则重新裁剪
centers = (boxes[:, :2] + boxes[:, 2:]) / 2#求中心
mask_a = np.logical_and(roi[:2] < centers, centers < roi[2:]).all(axis=1)
boxes_t = boxes[mask_a].copy()
labels_t = labels[mask_a].copy()
landms_t = landm[mask_a].copy()
landms_t = landms_t.reshape([-1, 5, 2])
if boxes_t.shape[0] == 0:
continue
# 获取img_t的像素信息,注意height是第一维
image_t = image[roi[1]:roi[3], roi[0]:roi[2]]
# 对GT的坐标重新限定,主要是因为边界问题
boxes_t[:, :2] = np.maximum(boxes_t[:, :2], roi[:2])
boxes_t[:, :2] -= roi[:2]
boxes_t[:, 2:] = np.minimum(boxes_t[:, 2:], roi[2:])
boxes_t[:, 2:] -= roi[:2]
# landm
landms_t[:, :, :2] = landms_t[:, :, :2] - roi[:2]
landms_t[:, :, :2] = np.maximum(landms_t[:, :, :2], np.array([0, 0]))
landms_t[:, :, :2] = np.minimum(landms_t[:, :, :2], roi[2:] - roi[:2])
landms_t = landms_t.reshape([-1, 10])
# make sure that the cropped image contains at least one face > 16 pixel at training image scale
#确保裁剪后的图像在训练图像比例上至少包含一个大于16像素的面
b_w_t = (boxes_t[:, 2] - boxes_t[:, 0] + 1) / w * img_dim
b_h_t = (boxes_t[:, 3] - boxes_t[:, 1] + 1) / h * img_dim
mask_b = np.minimum(b_w_t, b_h_t) > 0.0
boxes_t = boxes_t[mask_b]
labels_t = labels_t[mask_b]
landms_t = landms_t[mask_b]
if boxes_t.shape[0] == 0:
continue
pad_image_flag = False
return image_t, boxes_t, labels_t, landms_t, pad_image_flag
return image, boxes, labels, landm, pad_image_flag
# 亮度对比度在RGB空间调整,色相饱和度在HSV空间调整,都是以0.5的概率
def _distort(image):
def _convert(image, alpha=1, beta=0):
tmp = image.astype(float) * alpha + beta
tmp[tmp < 0] = 0
tmp[tmp > 255] = 255
image[:] = tmp
image = image.copy()
if random.randrange(2):
#brightness distortion
if random.randrange(2):
_convert(image, beta=random.uniform(-32, 32))
#contrast distortion
if random.randrange(2):
_convert(image, alpha=random.uniform(0.5, 1.5))
image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
#saturation distortion
if random.randrange(2):
_convert(image[:, :, 1], alpha=random.uniform(0.5, 1.5))
#hue distortion
if random.randrange(2):
tmp = image[:, :, 0].astype(int) + random.randint(-18, 18)
tmp %= 180
image[:, :, 0] = tmp
image = cv2.cvtColor(image, cv2.COLOR_HSV2BGR)
else:
#brightness distortion
if random.randrange(2):
_convert(image, beta=random.uniform(-32, 32))
image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
#saturation distortion
if random.randrange(2):
_convert(image[:, :, 1], alpha=random.uniform(0.5, 1.5))
#hue distortion
if random.randrange(2):
tmp = image[:, :, 0].astype(int) + random.randint(-18, 18)
tmp %= 180
image[:, :, 0] = tmp
image = cv2.cvtColor(image, cv2.COLOR_HSV2BGR)
#contrast distortion
if random.randrange(2):
_convert(image, alpha=random.uniform(0.5, 1.5))
return image
# 扩展图片,以p的概率,caffe中p=0.5,pytorch中p=0.6
def _expand(image, boxes, fill, p):
if random.randrange(2):
return image, boxes
height, width, depth = image.shape#获得图片信息
scale = random.uniform(1, p)#将随机生成下一个实数,它在 [x, y] 范围内
w = int(scale * width)
h = int(scale * height)
## 随机生成左上角的点的坐标
left = random.randint(0, w - width)
top = random.randint(0, h - height)
# 对GT的坐标的调整
boxes_t = boxes.copy()
boxes_t[:, :2] += (left, top)
boxes_t[:, 2:] += (left, top)
## 扩展后的图像,和原图重叠部分原像素填充;其他部分填充均值,因为后续需要减去均值,所以等价于0填充,即为黑边
expand_image = np.empty(
(h, w, depth),
dtype=image.dtype)
expand_image[:, :] = fill
expand_image[top:top + height, left:left + width] = image
image = expand_image
return image, boxes_t
# 以0.5的概率水平翻转,返回处理后的图片和GT信息,landms
def _mirror(image, boxes, landms):
_, width, _ = image.shape
if random.randrange(2):
image = image[:, ::-1]
boxes = boxes.copy()
boxes[:, 0::2] = width - boxes[:, 2::-2]
# landm
landms = landms.copy()
landms = landms.reshape([-1, 5, 2])
landms[:, :, 0] = width - landms[:, :, 0]
tmp = landms[:, 1, :].copy()
landms[:, 1, :] = landms[:, 0, :]
landms[:, 0, :] = tmp
tmp1 = landms[:, 4, :].copy()
landms[:, 4, :] = landms[:, 3, :]
landms[:, 3, :] = tmp1
landms = landms.reshape([-1, 10])
return image, boxes, landms
def _pad_to_square(image, rgb_mean, pad_image_flag):
if not pad_image_flag:
return image
height, width, _ = image.shape
long_side = max(width, height)
image_t = np.empty((long_side, long_side, 3), dtype=image.dtype)
image_t[:, :] = rgb_mean
image_t[0:0 + height, 0:0 + width] = image
return image_t
# 随机选择一种resize方式,进行resize,并将channel维度调到第一维
def _resize_subtract_mean(image, insize, rgb_mean):
interp_methods = [cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA, cv2.INTER_NEAREST, cv2.INTER_LANCZOS4]
interp_method = interp_methods[random.randrange(5)]
image = cv2.resize(image, (insize, insize), interpolation=interp_method)
image = image.astype(np.float32)
image -= rgb_mean
return image.transpose(2, 0, 1)
# 数据增强类
class preproc(object):
def __init__(self, img_dim, rgb_means):
self.img_dim = img_dim
self.rgb_means = rgb_means
def __call__(self, image, targets):
assert targets.shape[0] > 0, "this image does not have gt"
# 下面的代码段实现拷贝作用,备份。
boxes = targets[:, :4].copy()
labels = targets[:, -1].copy()
landm = targets[:, 4:-1].copy()
# 数据增强部分
image_t, boxes_t, labels_t, landm_t, pad_image_flag = _crop(image, boxes, labels, landm, self.img_dim)#剪裁
image_t = _distort(image_t)# 亮度对比度色相饱和度等属性调整
image_t = _pad_to_square(image_t,self.rgb_means, pad_image_flag)#裁剪后再扩展
image_t, boxes_t, landm_t = _mirror(image_t, boxes_t, landm_t)# 水平翻转
height, width, _ = image_t.shape
image_t = _resize_subtract_mean(image_t, self.img_dim, self.rgb_means)# aug后的img进行resize并减去均值
boxes_t[:, 0::2] /= width
boxes_t[:, 1::2] /= height
landm_t[:, 0::2] /= width
landm_t[:, 1::2] /= height
#np.expand_dims:用于扩展数组的形状
labels_t = np.expand_dims(labels_t, 1)
#np.hstack():在水平方向上平铺
targets_t = np.hstack((boxes_t, landm_t, labels_t))#整合targets信息
return image_t, targets_t
wider_face.py
import os
import os.path
import sys
import torch
import torch.utils.data as data
import cv2
import numpy as np
#封装数据集
class WiderFaceDetection(data.Dataset):
def __init__(self, txt_path, preproc=None):
self.preproc = preproc
self.imgs_path = []
self.words = []
f = open(txt_path,'r')
lines = f.readlines()
isFirst = True
labels = []
for line in lines:
line = line.rstrip()
if line.startswith('#'):
if isFirst is True:
isFirst = False
else:
labels_copy = labels.copy()
self.words.append(labels_copy)
labels.clear()
path = line[2:]
path = txt_path.replace('label.txt','images/') + path
self.imgs_path.append(path)
else:
line = line.split(' ')
label = [float(x) for x in line]
labels.append(label)
self.words.append(labels)
def __len__(self):
return len(self.imgs_path)
def __getitem__(self, index):
img = cv2.imread(self.imgs_path[index])
height, width, _ = img.shape
labels = self.words[index]
annotations = np.zeros((0, 15))
if len(labels) == 0:
return annotations
for idx, label in enumerate(labels):
annotation = np.zeros((1, 15))
# bbox
annotation[0, 0] = label[0] # x1
annotation[0, 1] = label[1] # y1
annotation[0, 2] = label[0] + label[2] # x2
annotation[0, 3] = label[1] + label[3] # y2
# landmarks
annotation[0, 4] = label[4] # l0_x
annotation[0, 5] = label[5] # l0_y
annotation[0, 6] = label[7] # l1_x
annotation[0, 7] = label[8] # l1_y
annotation[0, 8] = label[10] # l2_x
annotation[0, 9] = label[11] # l2_y
annotation[0, 10] = label[13] # l3_x
annotation[0, 11] = label[14] # l3_y
annotation[0, 12] = label[16] # l4_x
annotation[0, 13] = label[17] # l4_y
if (annotation[0, 4]<0):
annotation[0, 14] = -1
else:
annotation[0, 14] = 1
annotations = np.append(annotations, annotation, axis=0)#为原始array添加一些values
target = np.array(annotations)
if self.preproc is not None:
img, target = self.preproc(img, target)
return torch.from_numpy(img), target
def detection_collate(batch):
"""Custom collate fn for dealing with batches of images that have a different
number of associated object annotations (bounding boxes).
自定义处理在同一个batch,含有不同数量的目标框的情况
Arguments:
batch: (tuple) A tuple of tensor images and lists of annotations
Return:
A tuple containing:
1) (tensor) batch of images stacked on their 0 dim
2) (list of tensors) annotations for a given image are stacked on 0 dim
"""
targets = []
imgs = []
for _, sample in enumerate(batch):
for _, tup in enumerate(sample):
if torch.is_tensor(tup):
imgs.append(tup)
elif isinstance(tup, type(np.empty(0))):#isinstance() 函数来判断一个对象是否是一个已知的类型
annos = torch.from_numpy(tup).float()
targets.append(annos)
return (torch.stack(imgs, 0), targets)