- 2025基金公司私有化部署趋势分析:技术自主权的崛起
标题:基金公司私有化部署:数据主权时代的战略选择与实战指南副标题:从DeepSeek到板栗看板,解密金融巨头如何用私有化部署重塑竞争力【热点引入:一场无声的金融科技革命】2025年2月,、十余家公募基金密集宣布完成DeepSeek大模型的私有化部署,这一现象登上财经热搜榜首。据不完全统计,超60%的头部基金公司已启动私有化部署计划,涉及投研、风控、客户服务等核心场景。这场革命背后的驱动力,正是金融
- 【Linux系统】线程安全与可重入性:深入探讨两者的关系
时差freebright
#Linux线程linux运维服务器
在多线程编程中,线程安全和可重入性是两个非常重要的概念。虽然它们有一定的关联,但并不完全等同。本文将详细解析这两个概念的定义、区别以及它们之间的关系,并通过具体的例子帮助读者更好地理解。0.核心的两句话可重入函数是线程安全函数的⼀种线程安全不一定是可重入的,而可重入函数则⼀定是线程安全的。1.线程安全(ThreadSafety)线程安全是指一个函数或一段代码在多线程环境下被调用时,能够正确地处理多
- 【第11章:生成式AI与创意应用—11.2 音频与音乐生成的探索与实践】
再见孙悟空_
#【深度学习・探索智能核心奥秘】人工智能音视频自然语言处理NLP深度学习生成式AIDeepSeek
凌晨三点的录音棚里,制作人小林对着空荡荡的混音台抓狂——广告方临时要求将电子舞曲改编成巴洛克风格,还要保留"赛博朋克"元素。当他在AI音乐平台输入"维瓦尔弟遇见霓虹灯"的瞬间,一段融合羽管键琴与合成器的奇妙旋律喷涌而出,这场人与机器的音乐狂想曲正式拉开帷幕。一、声波炼金术:从物理建模到神经作曲1.1传统音频生成的三大门派在AI登场之前,音乐科技已经历三次革命:物理建模派(1980s):用微分方程模
- 如何让ChatGPT生成Midjourney提示词
AI观星台
人工智能stablediffusionmidjourney
关注文章下方公众号,即可免费获取AIGC最新学习资料导读:最近AI绘画非常的火,今天我们看ChatGPT如何生成Midjourney提示词,让AI教AI做事。本文字数:900,阅读时长大约:3分钟正如Midjourney的官方网站报道的那样,提供工作提示(Prompt)是一项碰运气的业务。从单个表情符号或单词都可以生成图像,但自然地结果可能并不完全符合用户的预期。一般来说,提示越长、越详细,结果就
- 可观测性PHP秩判据,线性系统的可控性和可观测性.ppt
特效小哥studio
可观测性PHP秩判据
线性系统的可控性和可观测性第三章线性系统的可控性与可观测性;3.1可控性和可观测性的定义;3.1可控性和可观测性的定义;例3-1:给定系统的状态空间描述为;二.可控性定义;2.系统可控;3.系统不完全可控;4.状态可达与系统可达;三.可观测性定义;2.系统不可观测;3.2线性定常连续系统的可控性判据(※);证:充分性:已知W(0,t1)为非奇异,欲证系统为完全可控,采用构造法来证明。对任一非零初始
- 煤矸石无线测温系统项目背景
德明电子
无线测温
一、煤矸石煤场场监测系统项目背景煤矸石是采煤和洗煤过程中的排弃物,含碳量较低、比煤坚硬的黑色岩石,通常占采煤量的15%~20%,其年产量约占煤炭总产量的十分之一。据不完全统计,国有煤矿现有煤矸石山6000余座,堆积量50亿吨以上,占我国工业固体废物排放总量的40%以上。目前,随着综采机械化的提高及煤炭资源的大量利用,使得煤矸石的产生量逐年增加,为了节约土地利用率一般都是将煤矸石山堆积成山,但是长期
- 差分解方程
やっはろ
django
差分解方程差分法在数值求解偏微分方程(PDEs)和常微分方程(ODEs)时,可以分为隐式格式和显式格式。以下是两者的主要区别:显式格式(ExplicitScheme)时间推进:显式格式在每一个时间步直接计算出下一个时间步的解。不需要求解非线性方程组,因为每个时间步的解可以直接从上一个时间步的解计算得出。稳定性:通常要求时间步长较小,以保证数值稳定性。稳定性与时间步长和空间步长的比值有关,通常由一个
- 人工智能的本质解构:从二进制桎梏到造物主悖论
Somnolence.·.·.·.
人工智能人工智能ai
一、数学牢笼中的困兽:人工智能的0-1本质人工智能的底层逻辑是数学暴力的具象化演绎。晶体管开关的物理震荡被抽象为布尔代数的0-1序列,冯·诺依曼架构将思维简化为存储器与运算器的机械对话。即使深度神经网络看似模拟人脑突触,其本质仍是矩阵乘法的迭代游戏——波士顿动力机器人的空翻动作不过是微分方程求解的物理引擎呈现,AlphaGo的围棋神话只是蒙特卡洛树搜索的概率统计。这种基于有限离散数学的架构,注定人
- erf 和 erfc 函数介绍以及在通信系统中的应用
正是读书时
知识点概率论信息与通信
1.误差函数(erf)误差函数\(\text{erf}(x)\)是一种特殊函数,在概率、统计和偏微分方程中有广泛应用。它的定义为:\[\text{erf}(x)=\frac{2}{\sqrt{\pi}}\int_0^xe^{-t^2}\,dt\]特性:-\(\text{erf}(0)=0\)-\(\text{erf}(\infty)=1\)-\(\text{erf}(-x)=-\text{erf}
- LeetCode--32. 最长有效括号【栈和dp】
Rinai_R
LeetCodeleetcode算法职场和发展golang数据结构动态规划
32.最长有效括号前言分享一下dp和栈两个方法正文给你一个只包含'('和')'的字符串,找出最长有效(格式正确且连续)括号子串的长度。这道题与20.有效的括号类似,但是这道题需要计算出最长的有效括号字串的长度,所以做法并不完全一样。动态规划该题目dp方法最难的就是得出状态转移方程,只要克服了这一点,剩下都很简单,下面,我们以字符串"((())()("为例子。从左向右遍历,设定f[i]为包含当前下标
- DBA面试总结(Oracle篇)
浮萍哥
dbaoracle数据库
一、备份恢复1.RMAN备份是一种用于备份和恢复数据库文件归档日志和控制文件的工具软件,主要执行的是物理备份,可以执行完全或不完全的数据库恢复。既能支持热备,在归档模式下,RMAN可以执行在线备份。在非归档模式下,RMAN备份通常在数据库处于mount状态下进行。RMAN备份具有以下优点:支持增量备份,可以节省备份时间和空间。自动管理备份文件,无需手动指定文件名或位置,自动化备份和恢复,无需手动执
- MySQL百万级表模糊查询解决方案
le_duoduo
mysql数据库
一、引言1.1模糊查询在MySQL中的应用场景在现代数据处理和分析中,模糊查询是一项极其重要的功能。它允许用户通过不完全匹配的方式搜索数据,这在很多实际应用场景中非常有用。例如,在电商网站中,用户可能只记得商品名称的一部分,通过模糊查询,他们可以找到相关的商品。在社交网络平台,用户搜索朋友或群组时,也可能只输入部分姓名或群组名。此外,模糊查询在内容管理系统、企业资源规划系统、客户关系管理系统等多种
- 计算机视觉四大任务模型汇总
Zero_one_ws
《神经网络与深度学习》理论计算机视觉人工智能深度学习图像分类图像目标检测目标分割关键点检测
计算机视觉中有四大核心任务:1-分类任务、2-目标检测任务、3-目标分割任务和4-关键点检测任务文章1:一文读懂计算机视觉4大任务文章2:图像的目标分割任务:语义分割和实例分割不同任务之间相关但不完全相同,因此不同的任务最好选择相应的模型,话不多说,看表:(注:表中github链接并不一定是模型的正式版本,只是本文用于展示模型的网络结构和应用)1-分类任务模型序号模型ipynb模型的github链
- 数学建模与MATLAB实现:稳定状态模型与资源管理策略
青橘MATLAB学习
#数学建模Matlab编程实验数学建模算法
引言在实际问题中,动态过程的瞬时性态往往难以直接分析,而研究其稳定状态的特征则更具实际意义。本章介绍如何通过微分方程稳定性理论,结合再生资源管理、种群竞争等案例,分析系统的平衡点及稳定性,为实际决策提供数学依据。一、微分方程稳定性理论1.1基本概念自治系统:若微分方程组不显含时间变量ttt,则称为自治系统。例如:dxdt=F(x)\frac{dx}{dt}=F(x)dtdx=F(x)非自治系统可通
- 联想Y7000P win11笔记本双硬盘安装Ubuntu20双系统和显卡驱动
自动驾驶仿真测试
ubuntulinuxNVIDIA双系统
最新需要一个Ubuntu系统进行学习和工作,于是在笔记本上安装双系统。电脑为联想Y7000P,win11系统,电脑自带一块固态硬盘,我又加装了一块。所以win11在一块硬盘上,Ubuntu20准备安装在另一块硬盘上。参考了这位博主的步骤,但是不完全相同,感谢博主。安装U盘准备(1)镜像下载官网提供了最新版本目前为22.04的下载链接。由于我需要20.04,于是去了官网这里下载。还提供了国内的一些镜
- 计算机视觉8:图像分割
听说你还在搞什么原创~
计算机视觉图像处理深度学习
1.图像分割概述图像分割主要分为阈值分割方法和边缘检测等方法。阈值分割方法是提出最早的一种方法。边缘检测方法是被研究的最多的一种分割方法,它试图通过检测包含不同区域的边缘来解决图像分割问题。比如微分算子边缘检测,以及为了降低噪声影响使用多尺度方法提取图像边缘。2.图像分割技术现状图像分割,是将一幅数字图像按照某种目的划分为两个或多个子图像区域。理想的图像分割算法,应该是对所有的图像都能够自动的划分
- PID控制详解
鹿屿二向箔
算法
PID控制详解一、PID控制简介PID(ProportionalIntegralDerivative)控制是最早发展起来的控制策略之一,由于其算法简单、鲁棒性好和可靠性高,被广泛应用于工业过程控制,尤其适用于可建立精确数学模型的确定性控制系统。在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节,它实际上是一种算法。PID控制器问世至今已有近70年历史,
- DARTS-PT: 重新思考可微分神经架构搜索中的架构选择
凌洲丰Edwina
DARTS-PT:重新思考可微分神经架构搜索中的架构选择darts-pt[ICLR2021OutstandingPaper]RethinkingArchitectureSelectioninDifferentiableNAS项目地址:https://gitcode.com/gh_mirrors/da/darts-pt项目介绍DARTS-PT是一个基于GitHub的开源项目,源自ICLR2021的一
- DeepSeek这样提问更加精确!
即兴小索奇
ChatGPT&AIDeepSeekDeepSeek
相信很多朋友在使用DeepSeek时,都会遇到一个问题:提了问题之后,得到的回答似乎不完全符合自己的需求。究其原因,大多是提问的方式不够精准,导致了答案的泛化。那么,如何让提问更高效呢?不要简单地问这是什么很多时候,我们习惯性地问类似“什么是区块链?”这样的简单问题。虽然这个问题不难理解,但也太过宽泛了。DeepSeek并不会自动推断出你想要的深度或具体答案。如果你能进一步说明你对区块链的了解程度
- 大模型多智能体简单应用案例介绍
潘智祥
LLMSRE多智能体
多智能体角色的说明最近在尝试LLMMultiAgent(多智能体)的应用场景,下面给一个最近觉得还比较好用,也不是很麻烦的案例。这是基于微软的AutoGen框架写的一个脚本(为了阅读友好,完整代码放在了博客的最后面)。在这个脚本中,我以解决SRE的需求为案例,一共有4个Agent,可以理解为有4个SRE工程师,但是他们擅长的内容不完全一样。sre_engineer_01这是一个资深SRE工程师,偏
- python 散点图动,python – matplotlib动画散点图
超人越山峰
python散点图动
这里有一个使用新的动画模块的快速示例。它比它稍微复杂一点,但这应该给你一个框架做鸽友的事情。如果你在OSX上并使用OSX后端,你需要在下面的FuncAnimation初始化中将blit=True更改为blit=False。OSX后端不完全支持blit。性能将受损,但该示例应该在OSX上正确运行,禁用blitting。importmatplotlib.pyplotaspltimportmatplot
- 一阶系统和二阶系统
不知道是谁2
程序人生
一阶系统和二阶系统是动态系统分析中的两个基本概念,它们的主要区别在于系统的响应特性、阶次以及对输入信号的处理方式:1.**阶数**:-**一阶系统**:这类系统只有一个积分项,如常微分方程中的形式为dy/dt=k*x(t)+b,其中dy/dt表示状态变化率,k是增益系数,b可能是偏置。它的响应速度快,直接对输入做出反应。-**二阶系统**:有两个阶跃响应,通常包含一个导数项和一个积分项,如d^2y
- 机器学习,深度学习,神经网络,深度神经网络
武昌库里写JAVA
面试题汇总与解析java学习开发语言课程设计springboot
人工智能包含机器学习,机器学习包含深度学习(是其中比较重要的分支)。深度学习源自于人工神经网络的研究,但是并不完全等于传统神经网络。神经网络与深度神经网络的区别在于隐藏层级,通常两层或两层以上隐藏层的网络叫做深度神经网络。一般隐藏层越多,精确度越高。深度学习的算法又分很多种,比较典型的四种:卷积神经网络—CNN,循环神经网络—RNN,生成对抗网络—GANs,深度强化学习—RL。机器学习和深度学习的
- CentOS 7.4 VNC-TIGERVNC配置
云道轩
云计算
CentOS7.x上的VNC很多配置文档都不完全正确,主要是不能完全显示图形界面。如果我们能够安装redhatentpriseLinux7.x的官方文档配置就没有这个问题了。下面是根据redhatentpriseLinux7.x的官方文档做的实验。[root@compute1~]#yuminstalltigervnc-server-yInstalled:tigervnc-server.x86_64
- PyTorch动态计算图:如何灵活构建复杂模型
AI天才研究院
计算AI大模型企业级应用开发实战ChatGPT计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
PyTorch动态计算图:如何灵活构建复杂模型关键词:PyTorch、动态计算图、自动微分、反向传播、神经网络、模型构建、计算图优化文章目录PyTorch动态计算图:如何灵活构建复杂模型1.背景介绍1.1深度学习框架的发展1.2静态图与动态图的对比1.3PyTorch的崛起及其优势2.核心概念与联系2.1PyTorch中的张量(Tensor)2.2自动微分(Autograd)机制2.3动态计算图的
- (04)python-opencv图像处理——图像阈值、平滑图像、形态转换、图像梯度
欲游山河十万里
#opencv-python#深度学习#人工智能pythonopencv图像处理
目录前言一、图像阈值1.1简单的阈值法1.2自适应阈值二、平滑图像2.1二维卷积(图像滤波)2.2图像模糊2.2.1均值模糊2.2.2高斯模糊2.2.3中值滤波2.2.4双边滤波三、形态转换1、腐蚀2、膨胀3、开运算4、闭运算四、图像梯度Sobel和Scharr微分参考文前言在本博文中,进行图像阈值、平滑图像、形态转换、图像梯度的学习以及介绍。一、图像阈值在本部分中,你会学到简单阈值法,自适应阈值
- PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
神经常微分方程(NeuralODEs)是深度学习领域的创新性模型架构,它将神经网络的离散变换扩展为连续时间动力系统。与传统神经网络将层表示为离散变换不同,NeuralODEs将变换过程视为深度(或时间)的连续函数。这种方法为机器学习开创了新的研究方向,尤其在生成模型、时间序列分析和物理信息学习等领域具有重要应用。本文将基于Torchdyn(一个专门用于连续深度学习和平衡模型的PyTorch扩展库)
- 算法初学者(DFS搜索)
KuaCpp
算法深度优先c++
搜索分为DFS(图论):深度优先搜索,是一种用于遍历或搜索树或图的算法,所谓优先,就是说每次都尝试向更深的节点走。在搜索算法中,该DFS常常指利用递归方便地实现暴力枚举的算法,与图论中的DFS算法有一定相似之处,但并不完全相同,通常是:构造一棵搜索树进行搜索。例题洛谷P1706思路:先定义洛谷数组,一个用于存放合法解,一个用来标记该数是否用过。我们可以先写一个用于打印的函数print(),每当深搜
- PID详解
Mr.Fu!
PIDstm32单片机mcu51单片机嵌入式硬件
PID在控制领域应该是应用最为广泛的算法了,在工业控制,汽车电子等诸多领域中运用下面我用一个例子和算法过程来讲解PID的概念PID:P比例控制:基本作用就是控制对象以线性的方式增加,在一个常量比例下,动态输出缺点:会产生稳态误差I积分控制:基本作用就是用来消除稳态误差缺点:会增加超调D微分控制:基本作用就是减弱超调,加大惯性响应速度1、什么是PID及其作用上图描述:设定一个输出目标,反馈系统传回输
- 什么是PID控制?PID控制的原理
深圳市青牛科技实业有限公司
顶源科技单片机嵌入式硬件开发语言机器人
PID控制是一种经典的控制算法,用于调节系统的输出以使系统的反馈信号与设定值(或参考信号)尽可能接近。PID代表比例(Proportional)、积分(Integral)和微分(Derivative),它结合了这三种控制方式来实现对系统的控制。比例(Proportional)控制:比例控制根据系统当前偏差的大小来调节输出。假设设定值为SP,实际值为PV,那么比例控制器的输出可以表示为:[P=K_p
- 怎么样才能成为专业的程序员?
cocos2d-x小菜
编程PHP
如何要想成为一名专业的程序员?仅仅会写代码是不够的。从团队合作去解决问题到版本控制,你还得具备其他关键技能的工具包。当我们询问相关的专业开发人员,那些必备的关键技能都是什么的时候,下面是我们了解到的情况。
关于如何学习代码,各种声音很多,然后很多人就被误导为成为专业开发人员懂得一门编程语言就够了?!呵呵,就像其他工作一样,光会一个技能那是远远不够的。如果你想要成为
- java web开发 高并发处理
BreakingBad
javaWeb并发开发处理高
java处理高并发高负载类网站中数据库的设计方法(java教程,java处理大量数据,java高负载数据) 一:高并发高负载类网站关注点之数据库 没错,首先是数据库,这是大多数应用所面临的首个SPOF。尤其是Web2.0的应用,数据库的响应是首先要解决的。 一般来说MySQL是最常用的,可能最初是一个mysql主机,当数据增加到100万以上,那么,MySQL的效能急剧下降。常用的优化措施是M-S(
- mysql批量更新
ekian
mysql
mysql更新优化:
一版的更新的话都是采用update set的方式,但是如果需要批量更新的话,只能for循环的执行更新。或者采用executeBatch的方式,执行更新。无论哪种方式,性能都不见得多好。
三千多条的更新,需要3分多钟。
查询了批量更新的优化,有说replace into的方式,即:
replace into tableName(id,status) values
- 微软BI(3)
18289753290
微软BI SSIS
1)
Q:该列违反了完整性约束错误;已获得 OLE DB 记录。源:“Microsoft SQL Server Native Client 11.0” Hresult: 0x80004005 说明:“不能将值 NULL 插入列 'FZCHID',表 'JRB_EnterpriseCredit.dbo.QYFZCH';列不允许有 Null 值。INSERT 失败。”。
A:一般这类问题的存在是
- Java中的List
g21121
java
List是一个有序的 collection(也称为序列)。此接口的用户可以对列表中每个元素的插入位置进行精确地控制。用户可以根据元素的整数索引(在列表中的位置)访问元素,并搜索列表中的元素。
与 set 不同,列表通常允许重复
- 读书笔记
永夜-极光
读书笔记
1. K是一家加工厂,需要采购原材料,有A,B,C,D 4家供应商,其中A给出的价格最低,性价比最高,那么假如你是这家企业的采购经理,你会如何决策?
传统决策: A:100%订单 B,C,D:0%
&nbs
- centos 安装 Codeblocks
随便小屋
codeblocks
1.安装gcc,需要c和c++两部分,默认安装下,CentOS不安装编译器的,在终端输入以下命令即可yum install gccyum install gcc-c++
2.安装gtk2-devel,因为默认已经安装了正式产品需要的支持库,但是没有安装开发所需要的文档.yum install gtk2*
3. 安装wxGTK
yum search w
- 23种设计模式的形象比喻
aijuans
设计模式
1、ABSTRACT FACTORY—追MM少不了请吃饭了,麦当劳的鸡翅和肯德基的鸡翅都是MM爱吃的东西,虽然口味有所不同,但不管你带MM去麦当劳或肯德基,只管向服务员说“来四个鸡翅”就行了。麦当劳和肯德基就是生产鸡翅的Factory 工厂模式:客户类和工厂类分开。消费者任何时候需要某种产品,只需向工厂请求即可。消费者无须修改就可以接纳新产品。缺点是当产品修改时,工厂类也要做相应的修改。如:
- 开发管理 CheckLists
aoyouzi
开发管理 CheckLists
开发管理 CheckLists(23) -使项目组度过完整的生命周期
开发管理 CheckLists(22) -组织项目资源
开发管理 CheckLists(21) -控制项目的范围开发管理 CheckLists(20) -项目利益相关者责任开发管理 CheckLists(19) -选择合适的团队成员开发管理 CheckLists(18) -敏捷开发 Scrum Master 工作开发管理 C
- js实现切换
百合不是茶
JavaScript栏目切换
js主要功能之一就是实现页面的特效,窗体的切换可以减少页面的大小,被门户网站大量应用思路:
1,先将要显示的设置为display:bisible 否则设为none
2,设置栏目的id ,js获取栏目的id,如果id为Null就设置为显示
3,判断js获取的id名字;再设置是否显示
代码实现:
html代码:
<di
- 周鸿祎在360新员工入职培训上的讲话
bijian1013
感悟项目管理人生职场
这篇文章也是最近偶尔看到的,考虑到原博客发布者可能将其删除等原因,也更方便个人查找,特将原文拷贝再发布的。“学东西是为自己的,不要整天以混的姿态来跟公司博弈,就算是混,我觉得你要是能在混的时间里,收获一些别的有利于人生发展的东西,也是不错的,看你怎么把握了”,看了之后,对这句话记忆犹新。 &
- 前端Web开发的页面效果
Bill_chen
htmlWebMicrosoft
1.IE6下png图片的透明显示:
<img src="图片地址" border="0" style="Filter.Alpha(Opacity)=数值(100),style=数值(3)"/>
或在<head></head>间加一段JS代码让透明png图片正常显示。
2.<li>标
- 【JVM五】老年代垃圾回收:并发标记清理GC(CMS GC)
bit1129
垃圾回收
CMS概述
并发标记清理垃圾回收(Concurrent Mark and Sweep GC)算法的主要目标是在GC过程中,减少暂停用户线程的次数以及在不得不暂停用户线程的请夸功能,尽可能短的暂停用户线程的时间。这对于交互式应用,比如web应用来说,是非常重要的。
CMS垃圾回收针对新生代和老年代采用不同的策略。相比同吞吐量垃圾回收,它要复杂的多。吞吐量垃圾回收在执
- Struts2技术总结
白糖_
struts2
必备jar文件
早在struts2.0.*的时候,struts2的必备jar包需要如下几个:
commons-logging-*.jar Apache旗下commons项目的log日志包
freemarker-*.jar  
- Jquery easyui layout应用注意事项
bozch
jquery浏览器easyuilayout
在jquery easyui中提供了easyui-layout布局,他的布局比较局限,类似java中GUI的border布局。下面对其使用注意事项作简要介绍:
如果在现有的工程中前台界面均应用了jquery easyui,那么在布局的时候最好应用jquery eaysui的layout布局,否则在表单页面(编辑、查看、添加等等)在不同的浏览器会出
- java-拷贝特殊链表:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
bylijinnan
java
public class CopySpecialLinkedList {
/**
* 题目:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
拷贝pNext指针非常容易,所以题目的难点是如何拷贝pRand指针。
假设原来链表为A1 -> A2 ->... -> An,新拷贝
- color
Chen.H
JavaScripthtmlcss
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <HTML> <HEAD>&nbs
- [信息与战争]移动通讯与网络
comsci
网络
两个坚持:手机的电池必须可以取下来
光纤不能够入户,只能够到楼宇
建议大家找这本书看看:<&
- oracle flashback query(闪回查询)
daizj
oracleflashback queryflashback table
在Oracle 10g中,Flash back家族分为以下成员:
Flashback Database
Flashback Drop
Flashback Table
Flashback Query(分Flashback Query,Flashback Version Query,Flashback Transaction Query)
下面介绍一下Flashback Drop 和Flas
- zeus持久层DAO单元测试
deng520159
单元测试
zeus代码测试正紧张进行中,但由于工作比较忙,但速度比较慢.现在已经完成读写分离单元测试了,现在把几种情况单元测试的例子发出来,希望有人能进出意见,让它走下去.
本文是zeus的dao单元测试:
1.单元测试直接上代码
package com.dengliang.zeus.webdemo.test;
import org.junit.Test;
import o
- C语言学习三printf函数和scanf函数学习
dcj3sjt126com
cprintfscanflanguage
printf函数
/*
2013年3月10日20:42:32
地点:北京潘家园
功能:
目的:
测试%x %X %#x %#X的用法
*/
# include <stdio.h>
int main(void)
{
printf("哈哈!\n"); // \n表示换行
int i = 10;
printf
- 那你为什么小时候不好好读书?
dcj3sjt126com
life
dady, 我今天捡到了十块钱, 不过我还给那个人了
good girl! 那个人有没有和你讲thank you啊
没有啦....他拉我的耳朵我才把钱还给他的, 他哪里会和我讲thank you
爸爸, 如果地上有一张5块一张10块你拿哪一张呢....
当然是拿十块的咯...
爸爸你很笨的, 你不会两张都拿
爸爸为什么上个月那个人来跟你讨钱, 你告诉他没
- iptables开放端口
Fanyucai
linuxiptables端口
1,找到配置文件
vi /etc/sysconfig/iptables
2,添加端口开放,增加一行,开放18081端口
-A INPUT -m state --state NEW -m tcp -p tcp --dport 18081 -j ACCEPT
3,保存
ESC
:wq!
4,重启服务
service iptables
- Ehcache(05)——缓存的查询
234390216
排序ehcache统计query
缓存的查询
目录
1. 使Cache可查询
1.1 基于Xml配置
1.2 基于代码的配置
2 指定可搜索的属性
2.1 可查询属性类型
2.2 &
- 通过hashset找到数组中重复的元素
jackyrong
hashset
如何在hashset中快速找到重复的元素呢?方法很多,下面是其中一个办法:
int[] array = {1,1,2,3,4,5,6,7,8,8};
Set<Integer> set = new HashSet<Integer>();
for(int i = 0
- 使用ajax和window.history.pushState无刷新改变页面内容和地址栏URL
lanrikey
history
后退时关闭当前页面
<script type="text/javascript">
jQuery(document).ready(function ($) {
if (window.history && window.history.pushState) {
- 应用程序的通信成本
netkiller.github.com
虚拟机应用服务器陈景峰netkillerneo
应用程序的通信成本
什么是通信
一个程序中两个以上功能相互传递信号或数据叫做通信。
什么是成本
这是是指时间成本与空间成本。 时间就是传递数据所花费的时间。空间是指传递过程耗费容量大小。
都有哪些通信方式
全局变量
线程间通信
共享内存
共享文件
管道
Socket
硬件(串口,USB) 等等
全局变量
全局变量是成本最低通信方法,通过设置
- 一维数组与二维数组的声明与定义
恋洁e生
二维数组一维数组定义声明初始化
/** * */ package test20111005; /** * @author FlyingFire * @date:2011-11-18 上午04:33:36 * @author :代码整理 * @introduce :一维数组与二维数组的初始化 *summary: */ public c
- Spring Mybatis独立事务配置
toknowme
mybatis
在项目中有很多地方会使用到独立事务,下面以获取主键为例
(1)修改配置文件spring-mybatis.xml <!-- 开启事务支持 --> <tx:annotation-driven transaction-manager="transactionManager" /> &n
- 更新Anadroid SDK Tooks之后,Eclipse提示No update were found
xp9802
eclipse
使用Android SDK Manager 更新了Anadroid SDK Tooks 之后,
打开eclipse提示 This Android SDK requires Android Developer Toolkit version 23.0.0 or above, 点击Check for Updates
检测一会后提示 No update were found