- STM32标准库之编码器接口示例代码
星仔极客
示例代码#STM32标准库示例代码stm32单片机嵌入式硬件
编码器接口测速Encoder.c#include"stm32f10x.h"//Deviceheader/***函数:编码器初始化*参数:无*返回值:无*/voidEncoder_Init(void){/*开启时钟*/RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3,ENABLE);//开启TIM3的时钟RCC_APB2PeriphClockCmd(RCC_APB
- WebRTC新增FFmpeg视频编解码模块
程序员老舅
音视频开发进阶webrtc视频编解码实时音视频音视频c++
1整体描述目前webrtc内置的视频编解码器包括:VP8、VP9、AV1和H264。一般情况下载pc端基本可以满足大部分的需求,但是有时候为了进行编解码器的扩展包括支持H265或者是支持硬件编解码以提升效率时需要新增编解码模块。2新增外部编码器编码器实现的要点包括两个部分:一是需要实现以VideoEncoder为基类的编码器对象,核心API实现如下:(1)初始化编码器,将编码参数传入进行初始化。v
- ubuntu ffmpeg的学习历程 -- chapter 1
ErisX
ubuntuffmpeg开发ubuntuffmpeg学习
学习目标:在ubuntu18.04系统上面使用ffmpeg完成视频的采集与H.264硬件编码,抽帧。学习历程:一、ffmpeg安装(非源码安装)直接使用指令进行安装,考虑系统与版本的匹配性,暂不用源码安装,直接apt-get安装编译好的版本。//安装指令sudoapt-getinstallffmpeg//安装好后查询版本信息sudoffmpeg-version//查询编码器sudoffmpeg-e
- 昆泰芯,霍尔传感器, 霍尔磁编码器
IC15110264988
北京冠宇铭通科技T-15110264988昆泰芯磁编码传感器
北京冠宇铭通科技有限公司代理的昆泰芯微电子科技有限公司是一家专注于以面向物联网应用的传感器芯片研发、生产和销售的高新技术企业,于2016年由多位业界资深传感器信号链芯片专家创立,致力于成为传感器信号链及物联网芯片的行业领导者和领先的工业级/汽车级芯片提供商。公司拥有核心专利20余项,产品性能达到国际一流水平,并成功打入一线知名品牌厂商。核心技术团队毕业于清华大学,荷兰代尔夫特理工大学等海内外知名大
- STM32旋转编码器驱动详解:方向判断、卡死处理与代码分析 | 零基础入门STM32第四十八步
触角01010001
STM32stm32嵌入式硬件单片机
主题内容教学目的/扩展视频旋转编码器电路原理,跳线设置,结构分析。驱动程序与调用。熟悉电路和驱动程序。师从洋桃电子,杜洋老师文章目录一、旋转编码器原理与驱动结构1.1旋转编码器工作原理1.2驱动程序结构二、方向判断方法深度解析2.1核心判断逻辑2.2两种判断方法对比三、卡死问题解决方案3.1卡死检测机制3.2卡死恢复流程四、关键代码解析4.1初始化函数4.2核心读取函数五、项目开发注意事项六、扩展
- Transformer 代码剖析15 - Transformer模型代码 (pytorch实现)
lczdyx
Transformer代码剖析transformerpytorch深度学习embedding人工智能python
一、模型架构全景解析1.1类定义与继承关系classTransformer(nn.Module):该实现继承PyTorch的nn.Module基类,采用面向对象设计模式。核心架构包含编码器-解码器双塔结构,通过参数配置实现NLP任务的通用处理能力。TransformerEncoderDecoderMulti-HeadAttentionFeedForwardMaskedMulti-HeadAtten
- 详解DeepSeek模型底层原理及和ChatGPT区别点
瞬间动力
语言模型机器学习AI编程云计算阿里云
一、DeepSeek大模型原理架构基础DeepSeek基于Transformer架构,Transformer架构主要由编码器和解码器组成,在自然语言处理任务中,通常使用的是Transformer的解码器部分。它的核心是自注意力机制(Self-Attention),这个机制允许模型在处理输入序列时,关注序列中不同位置的信息。例如,在处理句子“Thecatchasedthemouse”时,自注意力机制
- Transformer 代码剖析9 - 解码器模块Decoder (pytorch实现)
lczdyx
Transformer代码剖析transformerpytorch深度学习人工智能python
一、模块架构全景图1.1核心功能定位Transformer解码器是序列生成任务的核心组件,负责根据编码器输出和已生成序列预测下一个目标符号。其独特的三级注意力机制架构使其在机器翻译、文本生成等任务中表现出色。下面是解码器在Transformer架构中的定位示意图:解码器层组件解码器内部结构Transformer自注意力交叉注意力前馈网络残差连接+层归一化嵌入层位置编码解码器层1解码器层2...解码
- AI大模型-提示工程学习笔记21-图提示 (Graph Prompting)
9命怪猫
AI人工智能学习大模型aiprompt
目录1.图提示的核心思想(1)传统提示的局限性(2)GraphPrompting的解决方案2.GraphPrompting的工作流程(1)图构建(2)图选择/子图提取(3)图编码(4)提示构建(5)LLM推理与生成3.GraphPrompting的关键组件(1)大语言模型(LLM)(2)图数据库(GraphDatabase)(3)图编码器(GraphEncoder)(4)提示模板(PromptTe
- Stable Diffusion(SD)系列模型及关联算法深度解析
Liudef06
StableDiffusionstablediffusion算法
一、基础模型架构演进SDv1.5核心架构:基于LatentDiffusionModel(LDM),通过VAE将图像压缩至潜空间进行扩散训练,支持512x512分辨率生成,兼容二次元与写实风格混合创作12。训练数据:使用LAION-5B数据集过滤后的子集,文本编码器为CLIPViT-L/1434。局限性:对复杂光影和材质的细节刻画能力较弱,高分辨率生成需依赖外部放大工具28。
- Transformer 代码剖析8 - 编码器模块Encoder (pytorch实现)
lczdyx
Transformer代码剖析transformerpytorch深度学习人工智能python
一、代码结构总览TransformerEncoder__init__初始化Encoder类forward前向传播super()父类初始化构建词嵌入层self.emb=TransformerEmbedding参数:d_model/max_len/vocab_size/drop_prob/device构建编码层堆栈self.layers=nn.ModuleList循环创建n_layers个Encode
- Transformer 代码剖析4 - 编码器层实现 (pytorch实现)
lczdyx
Transformer代码剖析transformerpytorch深度学习人工智能python
一、EncoderLayer-类结构定义参考:项目代码classEncoderLayer(nn.Module):def__init__(self,d_model,ffn_hidden,n_head,drop_prob):super(EncoderLayer,self).__init__()self.attention=MultiHeadAttention(d_model=d_model,n_hea
- VQ-Diffusion 深度解析与实战指南
晏灵昀Odette
VQ-Diffusion深度解析与实战指南VQ-Diffusion项目地址:https://gitcode.com/gh_mirrors/vqd/VQ-Diffusion1.项目介绍VQ-Diffusion是一个用于文本到图像合成的深度学习模型,基于矢量量化变分自编码器(VQ-VAE)和去噪扩散概率模型(DenoisingDiffusionProbabilisticModel)。该模型通过将DDP
- [AI] [ComfyUI]理解ComyUI的基本原理及其图像生成技术
技术小甜甜
AI探索者人工智能AI作画
ComyUI作为一种图像生成框架,其背后的核心技术基于潜在空间的概念,并通过各种深度学习模块实现高效的图像生成与本地部署。本文将详细探讨ComyUI的基本原理,涵盖其在图像生成中的关键概念,包括潜在空间、VAE模块、噪声处理以及CLIP编码器节点的作用。1.潜在空间的存在与生成效率什么是潜在空间?潜在空间(LatentSpace)是指数据压缩后的低维空间。在图像生成中,潜在空间的引入极大地提高了生
- 自编码器(Autoencoders)
路野yue
机器学习人工智能深度学习
自编码器(Autoencoders):自编码器由编码器和解码器组成,编码器将输入数据压缩为低维表示,解码器将其还原为原始数据。通过训练,自编码器能够学习数据的有效表示,常用于降维和特征提取。相比于独立模型,它的输入输出更灵活,且可以在输入完成后在完成解码。1.基本结构自编码器由两部分组成:编码器(Encoder):将输入数据压缩为低维表示(编码)。解码器(Decoder):从编码中重建原始数据。2
- 自动驾驶之BEVDet
maxruan
BEV自动驾驶自动驾驶人工智能机器学习
BEVDet主要分为4个模块:1、图像视图编码器(Image-viewEncoder):就是一个图像特征提取的网络,由主干网络backbone+颈部网络neck构成。经典主干网络比如resnet,SwinTransformer等。neck有==FPN==,PAFPN等。例如输入环视图像,记作Tensor([bs,N,3,H,W]),提取多尺度特征;其中bs=batchsize,N=环视图像的个数,
- AIGC生图技术剖析:文本生成图像的核心算法与创新应用
喵手
零基础学JavaAIGC算法
全文目录:开篇语前言AIGC技术核心:从文本到图像的转换1.文本编码与语义提取2.生成对抗网络(GAN)3.变分自编码器(VAE)4.融合模型:CLIP+VQ-GAN核心算法示例:使用Python生成图像使用OpenAI的DALL-E生成图像解释AIGC在多个领域的应用前景1.艺术创作2.广告设计3.虚拟现实(VR)与增强现实(AR)4.游戏开发总结:AIGC生图技术的未来文末开篇语哈喽,各位小伙
- 深度学习的前沿与挑战:从基础到最新进展
Jason_Orton
深度学习人工智能数据挖掘机器学习
目录引言什么是深度学习?深度学习的工作原理深度学习的关键技术1.卷积神经网络(CNN)2.循环神经网络(RNN)3.生成对抗网络(GAN)4.变分自编码器(VAE)5.自注意力机制与Transformer深度学习的应用1.计算机视觉2.自然语言处理(NLP)3.语音识别与合成4.推荐系统5.医学影像分析深度学习面临的挑战结语引言深度学习(DeepLearning)近年来成为人工智能领域的核心技术之
- (5-2-01)DeepSeek多模态大模型架构:Janus模型(1)
码农三叔
训练RAG多模态)架构人工智能transformerDeepseek大模型多模态
5.2Janus模型Janus多模态模型的设计核心在于视觉编码的解耦。传统多模态模型通常使用单一的视觉编码器来处理多模态理解和视觉生成任务,但由于这两种任务对视觉特征的需求存在显著差异,单一编码器往往难以同时满足两种任务的需求,从而导致性能瓶颈。为了解决这一问题,Janus模型提出了双路径视觉编码架构,将多模态理解和视觉生成任务的视觉编码过程完全分离,从而避免了任务间的冲突,并显著提升了模型在多模
- 从零开始:使用PyTorch构建DeepSeek R1模型及其训练详解
陆鳐LuLu
pytorch人工智能python
本文将引导你使用PyTorch从零开始构建DeepSeekR1模型,并详细解释模型架构和训练步骤。DeepSeekR1是一个假设的模型名称,为了演示目的,我们将构建一个基于Transformer的简单文本生成模型。1.模型架构DeepSeekR1的核心是一个基于Transformer的编码器-解码器架构,包含以下关键组件:EmbeddingLayer:将输入的单词索引转换为密集向量表示。Posit
- 【RAG系列】文字的数字化分身 - 向量嵌入的魔法世界
什么都想学的阿超
原理概念#深度学习深度学习人工智能RAG
文字的数字化分身-向量嵌入的魔法世界文字向量编码器数字分身语义空间相似度计算代数运算关系推理一、认知革命:文字的数字基因工程1.1文字GPS坐标系想象每个词语都是银河系中的星球,向量坐标就是它们的星际坐标:经度:语义维度(动物/植物/人造物)纬度:情感维度(积极/中性/消极)高度:抽象维度(具体/抽象)#词语向量可视化示例words=["国王","王后","男人","女人","电脑"]embedd
- 检测加密货币挖矿活动的异常端口
扫地僧009
大数据安全分析深度学习机器学习安全
以下是基于DeepSeek架构思想实现的服务器异常端口检测案例与代码示例。我们以检测加密货币挖矿活动的异常端口为例,使用无监督学习(自编码器)实现动态基线建模。案例背景某云服务器出现异常流量:正常端口:80(HTTP),443(HTTPS),22(SSH)异常端口:6666(检测到高频TCP长连接,疑似门罗币挖矿流量)目标:通过自编码器学习正常端口行为模式,自动标记6666端口的异常活动。代码实现
- TMDS数据编码算法
小灰灰的FPGA
FPGAfpgaverilog算法
TMDS,TransitionMinimizedDifferentialSignaling,即最小化差分传输信号,在DVI(数字视频接口,只能传输视频)和HDMI(音视频均可传输)协议中用于传输音视频数据,使用差分信号传输高速串行数据。1、TMDS接口TMDS连接从逻辑功能上可以划分成两个阶段:编码和并串转换。在编码阶段,编码器将视频源中的像素数据、HDMI的音频/附加数据,以及行同步和场同步信号
- AIGC从入门到实战:ChatGPT 需要懂得写提示词的人
AI天才研究院
计算AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
AIGC从入门到实战:ChatGPT需要懂得写提示词的人第1章:AIGC概述1.1AIGC的基本概念AIGC(AI-GeneratedContent),即人工智能生成内容,是指利用人工智能技术,如生成对抗网络(GAN)、变分自编码器(VAE)等,生成具有高质量、多样化、个性化的文本、图像、音频等多媒体内容。AIGC技术已经广泛应用于内容创作、智能推荐、游戏开发、虚拟现实等多个领域,极大地提升了内容
- Opus编解码
行走在软件开发路上的人
音频
最近项目中用到了语音编码opus,在网上搜了一下,资料非常少,而且没有一个完整的教程,现在简单记录下来opus的使用方法。首先介绍一下opusOpusOpus编码器是一个有损声音编码的格式,由互联网工程任务组(IETF)进来开发,适用于网络上的实时声音传输,标准格式为RFC6716。Opus格式是一个开放格式,使用上没有任何专利或限制。特性Opus的前身是celt编码器。在当今的有损音频格式争夺上
- PHP2(WEB)
Sweet_vinegar
CTFCTF安全WEB攻防世界PHP
##解题思路打开页面什么线索都没有,目录扫描只是扫出来一个index.php,而源代码没有东西,且/robots.txt是不允许访问的于是一番查询后发现,有个index.phps的文件路径,里头写着一段php的逻辑,对url的id参数传参,对内容admin进行了解密才能得到flag,但信息原先就会被加密然后再解密,所以admin需要加密两次否则如下被禁止访问但在用burpsuite的编码器进行了二
- 【深度学习基础模型】去噪自编码器 (Denoising Autoencoders, DAE)详细理解并附实现代码。
985小水博一枚呀
深度学习学习笔记深度学习人工智能VAEpython学习autoencoder
【深度学习基础模型】ExtractingandComposingRobustFeatureswithDenoisingAutoencoders【深度学习基础模型】ExtractingandComposingRobustFeatureswithDenoisingAutoencoders文章目录【深度学习基础模型】ExtractingandComposingRobustFeatureswithDeno
- 十月学习笔记
木子不多余
学习日志学习笔记
知识点什么是预训练模型预训练模型是一个通过大量数据上进行训练并被保存下来的网络。可以将其通俗的理解为前人为了解决类似问题所创造出来的一个模型,有了前人的模型,当我们遇到新的问题时,便不再需要从零开始训练新模型,而可以直接用这个模型入手,进行简单的学习便可解决该新问题。transformer的架构:基于encoder-only或decoder-only架构Transformer模型由编码器(enco
- UNet:UNet的损失函数与优化器_2024-07-24_07-32-39.Tex
chenjj4003
游戏开发2深度学习人工智能前端javascriptgithubjava开发语言
UNet:UNet的损失函数与优化器UNet简介UNet的架构UNet是一种广泛应用于图像分割任务的卷积神经网络架构,由OlafRonneberger、PhilippFischer和ThomasBrox在2015年提出。其设计灵感来源于编码器-解码器结构,特别之处在于它在解码器部分引入了跳跃连接(skipconnections),这使得网络能够融合低层的特征细节和高层的语义信息,从而在图像分割任务
- 【深度学习】Unet的基础介绍
牧歌悠悠
深度学习人工智能算法深度学习人工智能U-net
U-Net是一种用于图像分割的深度学习模型,特别适合医学影像和其他需要分割细节的任务。如图:Unet论文原文为什么叫U-Net?U-Net的结构像字母“U”,所以得名。它的结构由两个主要部分组成:下采样(编码器):图像逐渐被缩小并且提取特征。上采样(解码器):逐渐恢复图像的尺寸,并通过“跳跃连接”将高分辨率的特征与低分辨率的特征结合,以保持细节。网络结构U-Net通常包括以下几部分:(1)下采样(
- Java常用排序算法/程序员必须掌握的8大排序算法
cugfy
java
分类:
1)插入排序(直接插入排序、希尔排序)
2)交换排序(冒泡排序、快速排序)
3)选择排序(直接选择排序、堆排序)
4)归并排序
5)分配排序(基数排序)
所需辅助空间最多:归并排序
所需辅助空间最少:堆排序
平均速度最快:快速排序
不稳定:快速排序,希尔排序,堆排序。
先来看看8种排序之间的关系:
1.直接插入排序
(1
- 【Spark102】Spark存储模块BlockManager剖析
bit1129
manager
Spark围绕着BlockManager构建了存储模块,包括RDD,Shuffle,Broadcast的存储都使用了BlockManager。而BlockManager在实现上是一个针对每个应用的Master/Executor结构,即Driver上BlockManager充当了Master角色,而各个Slave上(具体到应用范围,就是Executor)的BlockManager充当了Slave角色
- linux 查看端口被占用情况详解
daizj
linux端口占用netstatlsof
经常在启动一个程序会碰到端口被占用,这里讲一下怎么查看端口是否被占用,及哪个程序占用,怎么Kill掉已占用端口的程序
1、lsof -i:port
port为端口号
[root@slave /data/spark-1.4.0-bin-cdh4]# lsof -i:8080
COMMAND PID USER FD TY
- Hosts文件使用
周凡杨
hostslocahost
一切都要从localhost说起,经常在tomcat容器起动后,访问页面时输入http://localhost:8088/index.jsp,大家都知道localhost代表本机地址,如果本机IP是10.10.134.21,那就相当于http://10.10.134.21:8088/index.jsp,有时候也会看到http: 127.0.0.1:
- java excel工具
g21121
Java excel
直接上代码,一看就懂,利用的是jxl:
import java.io.File;
import java.io.IOException;
import jxl.Cell;
import jxl.Sheet;
import jxl.Workbook;
import jxl.read.biff.BiffException;
import jxl.write.Label;
import
- web报表工具finereport常用函数的用法总结(数组函数)
老A不折腾
finereportweb报表函数总结
ADD2ARRAY
ADDARRAY(array,insertArray, start):在数组第start个位置插入insertArray中的所有元素,再返回该数组。
示例:
ADDARRAY([3,4, 1, 5, 7], [23, 43, 22], 3)返回[3, 4, 23, 43, 22, 1, 5, 7].
ADDARRAY([3,4, 1, 5, 7], "测试&q
- 游戏服务器网络带宽负载计算
墙头上一根草
服务器
家庭所安装的4M,8M宽带。其中M是指,Mbits/S
其中要提前说明的是:
8bits = 1Byte
即8位等于1字节。我们硬盘大小50G。意思是50*1024M字节,约为 50000多字节。但是网宽是以“位”为单位的,所以,8Mbits就是1M字节。是容积体积的单位。
8Mbits/s后面的S是秒。8Mbits/s意思是 每秒8M位,即每秒1M字节。
我是在计算我们网络流量时想到的
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
Spring 3 系列
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- 高性能mysql 之 选择存储引擎(一)
annan211
mysqlInnoDBMySQL引擎存储引擎
1 没有特殊情况,应尽可能使用InnoDB存储引擎。 原因:InnoDB 和 MYIsAM 是mysql 最常用、使用最普遍的存储引擎。其中InnoDB是最重要、最广泛的存储引擎。她 被设计用来处理大量的短期事务。短期事务大部分情况下是正常提交的,很少有回滚的情况。InnoDB的性能和自动崩溃 恢复特性使得她在非事务型存储的需求中也非常流行,除非有非常
- UDP网络编程
百合不是茶
UDP编程局域网组播
UDP是基于无连接的,不可靠的传输 与TCP/IP相反
UDP实现私聊,发送方式客户端,接受方式服务器
package netUDP_sc;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.Ine
- JQuery对象的val()方法执行结果分析
bijian1013
JavaScriptjsjquery
JavaScript中,如果id对应的标签不存在(同理JAVA中,如果对象不存在),则调用它的方法会报错或抛异常。在实际开发中,发现JQuery在id对应的标签不存在时,调其val()方法不会报错,结果是undefined。
- http请求测试实例(采用json-lib解析)
bijian1013
jsonhttp
由于fastjson只支持JDK1.5版本,因些对于JDK1.4的项目,可以采用json-lib来解析JSON数据。如下是http请求的另外一种写法,仅供参考。
package com;
import java.util.HashMap;
import java.util.Map;
import
- 【RPC框架Hessian四】Hessian与Spring集成
bit1129
hessian
在【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中介绍了基于Hessian的RPC服务的实现步骤,在那里使用Hessian提供的API完成基于Hessian的RPC服务开发和客户端调用,本文使用Spring对Hessian的集成来实现Hessian的RPC调用。
定义模型、接口和服务器端代码
|---Model
&nb
- 【Mahout三】基于Mahout CBayes算法的20newsgroup流程分析
bit1129
Mahout
1.Mahout环境搭建
1.下载Mahout
http://mirror.bit.edu.cn/apache/mahout/0.10.0/mahout-distribution-0.10.0.tar.gz
2.解压Mahout
3. 配置环境变量
vim /etc/profile
export HADOOP_HOME=/home
- nginx负载tomcat遇非80时的转发问题
ronin47
nginx负载后端容器是tomcat(其它容器如WAS,JBOSS暂没发现这个问题)非80端口,遇到跳转异常问题。解决的思路是:$host:port
详细如下:
该问题是最先发现的,由于之前对nginx不是特别的熟悉所以该问题是个入门级别的:
? 1 2 3 4 5
- java-17-在一个字符串中找到第一个只出现一次的字符
bylijinnan
java
public class FirstShowOnlyOnceElement {
/**Q17.在一个字符串中找到第一个只出现一次的字符。如输入abaccdeff,则输出b
* 1.int[] count:count[i]表示i对应字符出现的次数
* 2.将26个英文字母映射:a-z <--> 0-25
* 3.假设全部字母都是小写
*/
pu
- mongoDB 复制集
开窍的石头
mongodb
mongo的复制集就像mysql的主从数据库,当你往其中的主复制集(primary)写数据的时候,副复制集(secondary)会自动同步主复制集(Primary)的数据,当主复制集挂掉以后其中的一个副复制集会自动成为主复制集。提供服务器的可用性。和防止当机问题
mo
- [宇宙与天文]宇宙时代的经济学
comsci
经济
宇宙尺度的交通工具一般都体型巨大,造价高昂。。。。。
在宇宙中进行航行,近程采用反作用力类型的发动机,需要消耗少量矿石燃料,中远程航行要采用量子或者聚变反应堆发动机,进行超空间跳跃,要消耗大量高纯度水晶体能源
以目前地球上国家的经济发展水平来讲,
- Git忽略文件
Cwind
git
有很多文件不必使用git管理。例如Eclipse或其他IDE生成的项目文件,编译生成的各种目标或临时文件等。使用git status时,会在Untracked files里面看到这些文件列表,在一次需要添加的文件比较多时(使用git add . / git add -u),会把这些所有的未跟踪文件添加进索引。
==== ==== ==== 一些牢骚
- MySQL连接数据库的必须配置
dashuaifu
mysql连接数据库配置
MySQL连接数据库的必须配置
1.driverClass:com.mysql.jdbc.Driver
2.jdbcUrl:jdbc:mysql://localhost:3306/dbname
3.user:username
4.password:password
其中1是驱动名;2是url,这里的‘dbna
- 一生要养成的60个习惯
dcj3sjt126com
习惯
一生要养成的60个习惯
第1篇 让你更受大家欢迎的习惯
1 守时,不准时赴约,让别人等,会失去很多机会。
如何做到:
①该起床时就起床,
②养成任何事情都提前15分钟的习惯。
③带本可以随时阅读的书,如果早了就拿出来读读。
④有条理,生活没条理最容易耽误时间。
⑤提前计划:将重要和不重要的事情岔开。
⑥今天就准备好明天要穿的衣服。
⑦按时睡觉,这会让按时起床更容易。
2 注重
- [介绍]Yii 是什么
dcj3sjt126com
PHPyii2
Yii 是一个高性能,基于组件的 PHP 框架,用于快速开发现代 Web 应用程序。名字 Yii (读作 易)在中文里有“极致简单与不断演变”两重含义,也可看作 Yes It Is! 的缩写。
Yii 最适合做什么?
Yii 是一个通用的 Web 编程框架,即可以用于开发各种用 PHP 构建的 Web 应用。因为基于组件的框架结构和设计精巧的缓存支持,它特别适合开发大型应
- Linux SSH常用总结
eksliang
linux sshSSHD
转载请出自出处:http://eksliang.iteye.com/blog/2186931 一、连接到远程主机
格式:
ssh name@remoteserver
例如:
ssh
[email protected]
二、连接到远程主机指定的端口
格式:
ssh name@remoteserver -p 22
例如:
ssh i
- 快速上传头像到服务端工具类FaceUtil
gundumw100
android
快速迭代用
import java.io.DataOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOExceptio
- jQuery入门之怎么使用
ini
JavaScripthtmljqueryWebcss
jQuery的强大我何问起(个人主页:hovertree.com)就不用多说了,那么怎么使用jQuery呢?
首先,下载jquery。下载地址:http://hovertree.com/hvtart/bjae/b8627323101a4994.htm,一个是压缩版本,一个是未压缩版本,如果在开发测试阶段,可以使用未压缩版本,实际应用一般使用压缩版本(min)。然后就在页面上引用。
- 带filter的hbase查询优化
kane_xie
查询优化hbaseRandomRowFilter
问题描述
hbase scan数据缓慢,server端出现LeaseException。hbase写入缓慢。
问题原因
直接原因是: hbase client端每次和regionserver交互的时候,都会在服务器端生成一个Lease,Lease的有效期由参数hbase.regionserver.lease.period确定。如果hbase scan需
- java设计模式-单例模式
men4661273
java单例枚举反射IOC
单例模式1,饿汉模式
//饿汉式单例类.在类初始化时,已经自行实例化
public class Singleton1 {
//私有的默认构造函数
private Singleton1() {}
//已经自行实例化
private static final Singleton1 singl
- mongodb 查询某一天所有信息的3种方法,根据日期查询
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
// mongodb的查询真让人难以琢磨,就查询单天信息,都需要花费一番功夫才行。
// 第一种方式:
coll.aggregate([
{$project:{sendDate: {$substr: ['$sendTime', 0, 10]}, sendTime: 1, content:1}},
{$match:{sendDate: '2015-
- 二维数组转换成JSON
tangqi609567707
java二维数组json
原文出处:http://blog.csdn.net/springsen/article/details/7833596
public class Demo {
public static void main(String[] args) { String[][] blogL
- erlang supervisor
wudixiaotie
erlang
定义supervisor时,如果是监控celuesimple_one_for_one则删除children的时候就用supervisor:terminate_child (SupModuleName, ChildPid),如果shutdown策略选择的是brutal_kill,那么supervisor会调用exit(ChildPid, kill),这样的话如果Child的behavior是gen_