- 缩小模拟与现实之间的差距:使用 NVIDIA Isaac Lab 训练 Spot 四足动物运动
AI人工智能集结号
人工智能
目录在IsaacLab中训练四足动物的运动能力目标观察和行动空间域随机化网络架构和RL算法细节先决条件用法训练策略执行训练好的策略结果使用JetsonOrin在Spot上部署经过训练的RL策略先决条件JetsonOrin上的硬件和网络设置Jetson上的软件设置运行策略开始开发您的自定义应用程序由于涉及复杂的动力学,为四足动物开发有效的运动策略对机器人技术提出了重大挑战。训练四足动物在现实世界中上
- Ubuntu 开机出现 recovering journal 无法进入图形界面解决流程(不通用,自用)
Artintel
学习ubuntu
远程连接进入命令行:rm-rf/etc/X11/xorg.confcp/etc/X11/xorg.conf.failsafe/etc/X11/xorg.confsudoservicelightdmstopsudoapt-getremovenvidia*cdjohn/qudong+cuda9.0\+\cudnn/sudochmoda+xnv.runsudo./nv.run-no-x-check-no
- Yolo-v3利用GPU训练make时发生错误:/usr/bin/ld: cannot find -lcuda
徐小妞66666
一.利用GPU训练Yolov3时,首先要修改MakeFile文件,修改格式如下:GPU=1(原来为0)CUDNN=1(原来为0)NVCC=/usr/local/cuda/bin/nvcc(新建,注意自己本机的地址)二.此时make产生错误/usr/bin/ld:cannotfind-lcuda1.查看MakeFile文件找到该行代码:LDFLAGS+=-L/usr/local/cuda/lib64
- 【环境搭建:onnx模型部署】onnxruntime-gpu安装与测试(python)(1)
2401_83703835
程序员python深度学习pytorch
cuda==10.2cudnn==8.0.3onnxruntime-gpu==1.5.0or1.6.0pipinstallonnxruntime-gpu==1.6.0###2.2方法二:onnxruntime-gpu不依赖于本地主机上cuda和cudnn在conda环境中安装,不依赖于本地主机上已安装的cuda和cudnn版本,灵活方便。这里,先说一下已经测试通过的组合:*python3.6,cu
- 使用TensorRT对YOLOv8模型进行加速推理
fengbingchun
DeepLearningCUDA/TensorRTYOLOv8TensorRT
这里使用GitHub上shouxieai的infer框架对YOLOv8模型进行加速推理,操作过程如下所示:1.配置环境,依赖项,包括:(1).CUDA:11.8(2).cuDNN:8.7.0(3).TensorRT:8.5.3.1(4).ONNX:1.16.0(5).OpenCV:4.10.02.cloneinfer代码:https://github.com/shouxieai/infer3.使用
- ONNX Runtime、CUDA、cuDNN、TensorRT版本对应
可keke
ML&DLpytorchdeeplearning
文章目录ONNXRuntime的安装ONNXRuntime与CUDA、cuDNN的版本对应ONNXRuntime与ONNX的版本对应ONNXRuntime、TensorRT、CUDA版本对应ONNXRuntime的安装官方文档注意,到目前为止,onnxruntime-gpu在CUDA12.x和CUDA11.x下的安装命令是不同的,仔细阅读官方文档。验证安装python>>>importonnxru
- 百度飞桨paddle安装 包括CUDA,cuDNN,opencv的安装
小甲学长
opencv百度paddlepaddle
conda创建新环境这部分代码均在AnacondaPrompt中写,要求已有Anaconda第一步:创建condacreate--nameyourEnvpython=3.6–name:也可以缩写为【-n】,【yourEnv】是新创建的虚拟环境的名字,创建完,可以装anaconda的目录下找到envs/yourEnv目录python=2.7:是python的版本号。也可以指定为【python=3.6
- HALCON 错误代码 #7709
聪明不喝牛奶
Halcon+CSharp深度学习halcon深度学习
前言最近在研究halcon的深度学习,在环境配置上花了不少的功夫搞定,结果正要开始训练分类的第二个train文件就出现了一个错误,报7709,折腾了三天才解决。原因报7709主要的原因有如下几个原因:1、就是你选的cuda版本和cudnn的不匹配,这个原因应该大家在选择的时候注意一下版本对比的话可以避免,基本上不是这个原因造成的。2、显卡的驱动版本的过低,需要下载一个驱动精灵升级一下显卡的驱动,但
- 环境安装-1:Python3.8+CUDA11.6.1+cuDNN8.6+Tensorflow-gpu2.6.1
w坐看云起时
环境安装tensorflowpython人工智能
环境配置建议多看几个别人的安装过程的图文,不要着急,慢慢来,我们肯定行,加油!一、知识储备1.CUDACUDA是显卡厂商NVIDIA推出的运算平台。CUDA™是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题。(来自百度词条)2.cuDNNNVIDIACUDA深度神经网络库(cuDNN)是一个GPU加速的深度神经网络基元库,能够以高度优化的方式实现标准例程(如前向和反
- Ubuntu下安装CUDA和cuDNN
_Mallow_
ubuntulinux
Ubuntu下安装CUDA和cuDNNCUDA1.查看显卡是否支持CUDA网址https://developer.nvidia.com/cuda-gpus。2.CUDA版本选择查看ubuntu版本是否对应要下载的CUDA,比如我选择的是11.7,对应CUDATOOLKITDOCUMENTION。在systemrequirements中查看版本,在pre-installationoactions有所
- Ubuntu20.04安装CUDA和cuDNN
Czi.
Python学习tensorflowpython深度学习
这里写目录标题1.简介1.1测试TensorFlow能否使用GPU2.安装CUDA11.22.1下载安装包2.2安装2.3配置环境变量2.3.1打开bashrc2.3.2末尾加上2.3.3内容生效2.4测试CUDA11.2是否安装成功3.安装cuDNN3.1官网下载安装包3.2安装cuDNN3.3测试4.完全卸载CUDA和cuDNN1.简介由于Tensoflow-gpu对cuda版本严格的要求,T
- 【Ubuntu20.04】配置深度学习环境
糊涂懿
深度学习人工智能
参考Ubuntu20.04配置深度学习环境(全网最细最全)NVIDIA显卡驱动安装安装CUDA通过终端nvidia-smi查看自己能安装的最高CUDA版本,在官方网址下载需要的版本。安装cuDNN在官方网址选择适配于自己安装的CUDA版本的cuDNN安装Anaconda(借用一下这张图)InstallerType那里一定要选择第三个runfile,可以选择不再安装NVIDIA驱动了,最后一个初始化
- 深度学习(二)
小泽爱刷题
深度学习人工智能
CuDNN(CUDADeepNeuralNetworklibrary)是NVIDIA为加速深度学习计算而开发的高性能GPU加速库,专门优化了深度神经网络(DNN)的常见操作,如卷积、池化、归一化和激活函数等。CuDNN的主要作用是通过利用GPU的并行计算能力,提高深度学习模型在GPU上的运行效率。CuDNN的作用加速卷积操作:卷积操作是深度学习中特别是在卷积神经网络(CNN)中最重要且最计算密集的
- deepstream | deepstream6.0配置python接口
__AtYou__
经验分享python开发语言人工智能
先决条件:ubuntu18.04deepstreamSDK6.0或更高版本python3.6Gstpythonv1.14.5,如果Jetson上缺少Gstpython安装,请使用以下命令安装:sudoapt-getinstallpython-gi-devexportGST_LIBS="-lgstreamer-1.0-lgobject-2.0-lglib-2.0"exportGST_CFLAGS="
- 百度飞浆目标检测PPYOLOE模型在PC端、Jetson上的部署(python)
代码能跑就可以
百度目标检测python学习计算机视觉笔记
部署目标检测模型前,需要配置好paddlepaddle的环境:开始使用_飞桨-源于产业实践的开源深度学习平台(paddlepaddle.org.cn)PC端和Jetson板卡端的部署方法相同,如下(直接放置部署和测试代码):importpaddle.inferenceimportcv2importnumpyasnpimporttimefrompaddle.inferenceimportConfig
- nvidia cuda镜像说明
九品神元师
linux人工智能python运维
nvidia/cuda:11.1.1-cudnn8-runtime:这是一个运行时镜像,适用于在已安装CUDA11.1.1和cuDNN8的环境中运行深度学习应用程序。该镜像包含运行时所需的库和工具,但不包含开发工具或头文件。nvidia/cuda:11.1.1-cudnn8-devel:这是一个开发镜像,适用于在已安装CUDA11.1.1和cuDNN8的环境中进行深度学习模型的开发。该镜像包含了编
- linux安装 cuda.run,Ubuntu18.04下安装CUDA和cudnn
weixin_39535527
linux安装cuda.run
安装前需要注意的问题:1需要安装对应的驱动,具体参考下图:安装过程可以参考:Ubuntu18.04安装nvidia显卡驱动2由于Cuda-9只支持gcc-6以下的版本,而Ubuntu18.04系统默认安装的gcc-7版,所以需要gcc降级,具体可以查看:linux下gcc、g++不同版本的安装和切换1.下载cuda.xxx.run文件这里需要注意的是cuda9并没有18.04的安装包,所以下载16
- NFC射频--天线设计
天涯铭月刀
嵌入式硬件NFC天线设计
一、NFC天线电路结构如图3.3所示,13.56Mhz读卡器电路又两部分组成,其中引脚RX到引脚AGND部分区域是信号接收电路;引脚TX1到引脚TX2之间区域是信号发射电路。信号接收电路由四个元器件构成,图中电容C4用来稳定读卡芯片内部提供的固定参考电压Vmid,R1、R2将参考电压信号引入RX引脚,使得RX引脚接收到的正弦波信号幅度在1.5~3V之间,通过调节R1、R2的比值可以调节RX引脚信号
- 【CUDA】在Windows10,GTX1050,cuda11.1上安装cuda环境
丶2136
环境相关机器学习gpu算力人工智能
目录一、检查系统要求和准备工作二、安装NVIDIA驱动程序三、下载并安装CUDAToolkit11.1四、安装cuDNN五、验证cuDNN是否安装成功(可选)六、设置环境变量七、验证安装八、测试CUDA环境在Windows10上为GTX1050显卡和CUDA11.1配置CUDA环境涉及几个步骤,包括安装NVIDIA驱动、CUDA工具包和cuDNN。以下是详细的步骤:一、检查系统要求和准备工作操作系
- 【CUDA】在Windows11,GTX3060上安装cuda环境
丶2136
环境相关机器学习gpu算力人工智能
目录一、检查系统要求和准备工作二、安装NVIDIA驱动程序三、下载并安装CUDAToolkit11.7四、安装cuDNN五、验证cuDNN是否安装成功(可选)六、设置环境变量七、验证安装八、测试CUDA环境总结在本文中,我们将逐步介绍如何在Windows11操作系统上为NVIDIAGTX3060显卡和CUDA11.7安装CUDA环境。请按照以下步骤操作。一、检查系统要求和准备工作在开始安装之前,请
- [2020]tensorflow2.1-GPU + CUDA +CUDNN配置过程记录
夏迪End
最近几天做视频数据集的时候要用到tensorflow2的gpu训练版本,要安装对应版本的cuda和cudnn,网上的教程五花八门,我尝试了很多论坛的方法,有些能用有些不可以(也可能是我操作错误),经过两天调试终于能够运行了。1介绍使用的版本:Win10,python3.7,tensorflow2.1-GPU,CUDA10.1,CUDNN7.6.5,显卡驱动版本是425.31(用的IDE是pycha
- trt | torch2trt的使用方式
Mopes__
分享TensorRTtorch2trt
一、安装1.安装tensorrtpython接口下载trt包.tar.gzhttps://developer.nvidia.com/nvidia-tensorrt-5x-download解压tarxvfTensorRT-6.0.1.5.Ubuntu-18.04.x86_64-gnu.cuda-10.1.cudnn7.6.tar.gz安装trtpython接口cdpythonpipinstallte
- Jetson-AGX-Orin 安装ros1
skynetkang
nvidia-orinNVIDIA-Orin
Jetson-AGX-Orin安装ros1系统:ubuntu20.04ARM64ros1版本:Noetic添加ROS源sudosh-c'echo"debhttp://packages.ros.org/ros/ubuntu$(lsb_release-sc)main">/etc/apt/sources.list.d/ros-latest.list'添加密钥sudoapt-keyadv--keyserv
- 【jetson交叉编译(5)】如何将apt安装的库复制出来?
Hali_Botebie
linux服务器运维
将apt将apt安装的库复制出来安装的库复制出来,通常指的是将apt-get命令,通常指的是将apt-get命令安装的软件包及其相关文件从系统中提取出来,以便在其他系统或环境中安装的软件包及其相关文件从系统中提取出来,以便在其他系统或环境中使用。使用。以下是将apt安装的库复制出来的步骤:以下是将apt安装的库复制出来的步骤:一、定位安装包路径一、定位安装包路径apt-get下载的软件包默认保存在
- 【jetson交叉编译(6)】orin ubuntu的库安装,通过apt下载deb 库,然后的解压到具体位置/opt/test/3rd
Hali_Botebie
ubuntulinux运维
基于【【jetson交叉编译(5)】如何将apt安装的库复制出来?】得到了deb库要将一个.deb包解压缩到特定位置/opt/test/3rd,你可以使用以下步骤:安装dpkg和ar工具:确保你已经安装了dpkg和ar工具。这些工具通常在大多数Ubuntu系统中已经安装。如果没有安装,可以使用以下命令进行安装:sudoapt-getupdatesudoapt-getinstalldpkgar创建目
- 【PyTorch】torch.backends.cudnn.benchmark 和 torch.backends.cudnn.deterministic
读思辨
PyTorchpytorch人工智能python
1.torch.backends.cudnn.benchmark在PyTorch中,torch.backends.cudnn.benchmark是一个配置选项,用于在运行时自动选择最优的卷积算法,以提高计算效率。这个设置特别针对使用CUDA和cuDNN库进行的运算,并在使用具有变化输入尺寸的网络时有很大帮助。让我们更详细地解释这个设置的功能和应用场景。什么是cuDNN?cuDNN(CUDADeep
- 【网络】 arp 命令 得到网段内所有物理设备ip
DFminer
linux网络运维
我的笔记本和NVIDIAJetsonOrin都位于同一个192.168.1.x的网段内,我想远程访问Orin,但我不知道orin的ip方法1:使用arp命令打开命令提示符:按下Win+R键,打开“运行”对话框。输入cmd并按Enter键打开命令提示符。使用arp命令:在命令提示符中输入arp-a并按Enter键。结果:试了两个动态地址,第二个就是我要找的
- OpenCV随机数与随机颜色绘制
苍天饶过谁?
OpenCV学习opencv人工智能计算机视觉C++
Matbg=Mat::zeros(Size(512,512),CV_8UC3);intw=bg.cols;inth=bg.rows;RNGrng(12345);while(true){intc=cv::waitKey(10);if(c==27){break;}intx1=rng.uniform(0,w);inty1=rng.uniform(0,h);intx2=rng.uniform(0,w);i
- MMDetection3D v1.4.0安装教程
Ly.Leo
激光雷达神经网络点云3d激光雷达目标检测
安装MMDetection3Dv1.4.01.系统环境2.安装2.1基本环境安装2.2调整具体版本2.3验证2.3安装MinkowskiEngine和TorchSparse3.最终环境配置5.附加库根据v1.4.0版本官方手册测试后的安装配置,亲测可行。1.系统环境项目版本日期Ubuntu18.04.06LTS-显卡RTX2070-显卡驱动525.105.17-2.安装MMDetection3D的
- Ubuntu 22.04.4 LTS 安装cuda和cudnn
鹤蓝桉
ubuntulinux
Ubuntu22.04.4LTS安装cuda和cudnn最简单最直接最快速的方法直接在命令行输入下面两行代码安装cudasudoaptinstallnvidia-cuda-toolkit安装cudnnsudoaptinstallnvidia-cudnn我实测安装的版本是cuda11.5,cudnn8.2.4
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,