雅可比矩阵matlab实现

篇一 : 雅可比矩阵:雅可比矩阵-定义,雅可比矩阵-MATLAB

在向量微积分中,雅可比矩阵是一阶偏导数以一定方式排列成的矩阵,其行列式成为雅可比行列式。还有,在代数几何中,代数曲线的雅可比量表示雅可比簇:伴随该曲线的一个群簇,曲线可以嵌入其中。

雅可比行列式_雅可比矩阵 -定义

[www.t262.com)在向量微积分中,雅可比矩阵是一阶偏导数以一定方式排列成的矩阵,其行列式称为雅可比行列式。

还有,在代数几何中,代数曲线的雅可比量表示雅可比簇:伴随该曲线的1个群簇,曲线可以嵌入其中。

它们全部都以数学家雅可比命名;英文雅可比量"Jacobian"可以发音为[ja ?ko bi ?n]或者[?? ?ko bi ?n]。

雅可比矩阵的重要性在于它体现了1个可微方程与给出点的最优线性逼近。因此,雅可比矩阵类似于多元函数的导数。


雅可比行列式

雅可比矩阵定义为向量对向量的微分矩阵,定义式如

下:

见所附jpg图片。

雅可比行列式_雅可比矩阵 -MATLAB

MATLAB中jacobian是用来计算Jacobi矩阵的函数。

syms r l f

x=r*cos(l)*cos(f);

y=r*cos(l)*sin(f);

z=r*sin(l);

J=jacobian([x;y;z],[r l f])

结果:

J =

[ cos(l)*cos(f), -r*sin(l)*cos(f), -r*cos(l)*sin(f)]

[ cos(l)*sin(f), -r*sin(l)*sin(f), r*cos(l)*cos(f)]

[ sin(l), r*cos(l), 0 ]

雅可比行列式_雅可比矩阵 -面积元

关于这个的一般性证明稍微复杂点,现在就给你证明为什么二维的dx(u,v)dy(u,v)=Jdudv成立

证明:对于曲面x=x(u,v),y=y(u,v),取它的微元,即小曲边四边形ABCD,其中

A(u,v),B(u+△u,v),C(u+△u,v+△v),D(u,v+△v),那么这个曲边四边形ABCD可以近似看成是微小向量B(u+△u,v)-A(u,v)和D(u,v+△v)-A(u,v)张成的。利用中值定理可知:

(u+△u,v)-(u,v)=Mdu

(u,v+△v)-(u,v)=Ndv

这里的M,N是偏导数的形式,不好打出,你可以自己算出来,很简单的。

当变化量很小时,我们把(u+△u,v)-(u,v)近似看成dx(u,v),(u,v+△v)-(u,v)看成dy(u,v),所以,

dx(u,v)dy(u,v)=M*Ndudv

而其中的M*N刚好就是二维Jacobi行列式的展开形式。

你可能感兴趣的:(matlab)