篇一 : 雅可比矩阵:雅可比矩阵-定义,雅可比矩阵-MATLAB
在向量微积分中,雅可比矩阵是一阶偏导数以一定方式排列成的矩阵,其行列式成为雅可比行列式。还有,在代数几何中,代数曲线的雅可比量表示雅可比簇:伴随该曲线的一个群簇,曲线可以嵌入其中。
雅可比行列式_雅可比矩阵 -定义
[www.t262.com)在向量微积分中,雅可比矩阵是一阶偏导数以一定方式排列成的矩阵,其行列式称为雅可比行列式。
还有,在代数几何中,代数曲线的雅可比量表示雅可比簇:伴随该曲线的1个群簇,曲线可以嵌入其中。
它们全部都以数学家雅可比命名;英文雅可比量"Jacobian"可以发音为[ja ?ko bi ?n]或者[?? ?ko bi ?n]。
雅可比矩阵的重要性在于它体现了1个可微方程与给出点的最优线性逼近。因此,雅可比矩阵类似于多元函数的导数。
雅可比矩阵定义为向量对向量的微分矩阵,定义式如
下:
见所附jpg图片。
雅可比行列式_雅可比矩阵 -MATLAB
MATLAB中jacobian是用来计算Jacobi矩阵的函数。
syms r l f
x=r*cos(l)*cos(f);
y=r*cos(l)*sin(f);
z=r*sin(l);
J=jacobian([x;y;z],[r l f])
结果:
J =
[ cos(l)*cos(f), -r*sin(l)*cos(f), -r*cos(l)*sin(f)]
[ cos(l)*sin(f), -r*sin(l)*sin(f), r*cos(l)*cos(f)]
[ sin(l), r*cos(l), 0 ]
雅可比行列式_雅可比矩阵 -面积元
关于这个的一般性证明稍微复杂点,现在就给你证明为什么二维的dx(u,v)dy(u,v)=Jdudv成立
证明:对于曲面x=x(u,v),y=y(u,v),取它的微元,即小曲边四边形ABCD,其中
A(u,v),B(u+△u,v),C(u+△u,v+△v),D(u,v+△v),那么这个曲边四边形ABCD可以近似看成是微小向量B(u+△u,v)-A(u,v)和D(u,v+△v)-A(u,v)张成的。利用中值定理可知:
(u+△u,v)-(u,v)=Mdu
(u,v+△v)-(u,v)=Ndv
这里的M,N是偏导数的形式,不好打出,你可以自己算出来,很简单的。
当变化量很小时,我们把(u+△u,v)-(u,v)近似看成dx(u,v),(u,v+△v)-(u,v)看成dy(u,v),所以,
dx(u,v)dy(u,v)=M*Ndudv
而其中的M*N刚好就是二维Jacobi行列式的展开形式。