Pytorch中的神坑:关于model.eval的问题

有时候使用Pytorch训练完模型,在测试数据上面得到的结果令人大跌眼镜。这个时候需要检查一下定义的Model类中有没有 BNDropout 层,如果有任何一个存在,那么在测试之前需要加入一行代码:

#model是实例化的模型对象
model = model.eval()

表示将模型转变为evaluation(测试)模式,这样就可以排除BN和Dropout对测试的干扰。因为BN和Dropout在训练和测试时是不同的:

对于BN,训练时通常采用mini-batch,所以每一批中的mean和std大致是相同的;而测试阶段往往是单个图像的输入,不存在mini-batch的概念。所以将model改为eval模式后,BN的参数固定,并采用之前训练好的全局的mean和std;

对于Dropout,训练阶段,隐含层神经元先乘概率P,再进行激活;而测试阶段,神经元先激活,每个隐含层神经元的输出再乘概率P,如下图所示:

Pytorch中的神坑:关于model.eval的问题_第1张图片

你可能感兴趣的:(Pytorch,深度学习)