python实现关联规则

参考:https://blog.csdn.net/Eastmount/article/details/53368440

参考的这位博主代码貌似有些小bug,改了一下

代码中Ci表示候选频繁i项集,Li表示符合条件的频繁i项集

# coding=utf-8
def createC1(dataSet):  # 构建所有1项候选项集的集合
    C1 = []
    for transaction in dataSet:
        for item in transaction:
            if [item] not in C1:
                C1.append([item])  # C1添加的是列表,对于每一项进行添加,[[1], [2], [3], [4], [5]]
    #print('C1:',C1)
    return list(map(frozenset, C1))  # 使用frozenset,被“冰冻”的集合,为后续建立字典key-value使用。




###由候选项集生成符合最小支持度的项集L。参数分别为数据集、候选项集列表,最小支持度
###如
###C3: [frozenset({1, 2, 3}), frozenset({1, 3, 5}), frozenset({2, 3, 5})]
###L3: [frozenset({2, 3, 5})]
def scanD(D, Ck, minSupport):
    ssCnt = {}
    for tid in D:  # 对于数据集里的每一条记录
        for can in Ck:  # 每个候选项集can
            if can.issubset(tid):  # 若是候选集can是作为记录的子集,那么其值+1,对其计数
                if not ssCnt.__contains__(can):  # ssCnt[can] = ssCnt.get(can,0)+1一句可破,没有的时候为0,加上1,有的时候用get取出,加1
                    ssCnt[can] = 1
                else:
                    ssCnt[can] += 1
    numItems = float(len(D))
    retList = []
    supportData = {}
    for key in ssCnt:
        support = ssCnt[key] / numItems  # 除以总的记录条数,即为其支持度
        if support >= minSupport:
            retList.insert(0, key)  # 超过最小支持度的项集,将其记录下来。
            supportData[key] = support
    return retList, supportData



###由Lk生成K项候选集Ck
###如由L2: [frozenset({3, 5}), frozenset({2, 5}), frozenset({2, 3}), frozenset({1, 3})]
###生成
###C3: [frozenset({1, 2, 3}), frozenset({1, 3, 5}), frozenset({2, 3, 5})]
def aprioriGen(Lk, k):
    retList = []
    lenLk = len(Lk)
    for i in range(lenLk):
        for j in range(i + 1,lenLk):
            if len(Lk[i] | Lk[j])==k:
                retList.append(Lk[i] | Lk[j])
    return list(set(retList))



####生成所有频繁子集
def apriori(dataSet, minSupport=0.5):
    C1 = createC1(dataSet)
    D = list(map(set, dataSet))
    L1, supportData = scanD(D, C1, minSupport)
    L = [L1]  # L将包含满足最小支持度,即经过筛选的所有频繁n项集,这里添加频繁1项集
    k = 2
    while (len(L[k - 2]) > 0):  # k=2开始,由频繁1项集生成频繁2项集,直到下一个打的项集为空
        Ck = aprioriGen(L[k - 2], k)
        Lk, supK = scanD(D, Ck, minSupport)
        supportData.update(supK)  # supportData为字典,存放每个项集的支持度,并以更新的方式加入新的supK
        L.append(Lk)
        k += 1
    return L, supportData





if __name__ == "__main__":
    dataSet = [[1, 3, 4], [2, 3, 5], [1, 2, 3, 5], [2, 5]]
    D = list(map(set, dataSet))
    L,suppData = apriori(dataSet)
    print('L:',L)
    print('suppData:',suppData)


    '''
    C1 = createC1(dataSet)
    L1, supportData1 = scanD(D, C1, 0.5)
    print('C1:',C1)
    print('L1:',L1)
    print('supportData1:',supportData1)

    C2 = aprioriGen(L1, 2)
    L2, supportData2 = scanD(D, C2, 0.5)
    print('C2:',C2)
    print('L2:',L2)
    print('supportData2:',supportData2)


    C3 = aprioriGen(L2, 3)
    L3, supportData3 = scanD(D, C3, 0.5)
    print('C3:',C3)
    print('L3:',L3)
    print('supportData3:',supportData3)

    '''

最终得到的所有支持度大于0.5的频繁子集及其支持度如下:

        frozenset({1}): 0.5, 
        frozenset({3}): 0.75, 
        frozenset({4}): 0.25, 
        frozenset({2}): 0.75, 
        frozenset({5}): 0.75, 
        frozenset({1, 3}): 0.5, 
        frozenset({2, 3}): 0.5, 
        frozenset({2, 5}): 0.75, 
        frozenset({3, 5}): 0.5, 
        frozenset({1, 2}): 0.25, 
        frozenset({1, 5}): 0.25, 
        frozenset({2, 3, 5}): 0.5, 
        frozenset({1, 2, 3}): 0.25, 
        frozenset({1, 3, 5}): 0.25

 

你可能感兴趣的:(推荐算法)