一次大量数据更新的性能优化调研

问题

工作中需要同步一些数据,大概接近百万条的量级,更新时间非常慢,需要7个多小时,更新的频率是每周一次。随着数据量的一步步增加,时间也越来越多,逐渐成为一个风险因子,于是想到要尝试做一些优化,降低同步时间。

分析

经过调查,需要同步的是TABLE_A,同步的过程可以简化表述为两步:

  1. Call API_B to get updated value.
  2. Update records in DB.

首先,检查log,看看这两个过程分别耗时多少。分析生产环境的log,发现,对于一条数据,

  • API call costs: ~350ms.
  • DB update costs: ~20ms.

做一个计算,100万条数据,假设每条同步需要0.4s,那么总耗时就是100h,和实际的6h不符。经过思考后解释是:还需要考虑线程和冗余数据。
实际使用了一个大小为10的线程池,100h除以10的话,就是10h,再算上一些冗余的不需要更新的数据(估计20%左右),理论计算时间和实际时间是在一个数量级上的。

所以,可以从两个方面着手优化,一是优化调用API的时间,二是优化DB写数据的时间。

解决 - API

分析API调用的代码,看到是一条一条调用的,使用了Object callAPI(Object input)这个函数。首先,做一个压力测试,看下callAPI()这个方法每秒可以处理多少请求。

ExecutorService executor = Executors.newFixedThreadPool(100);
for (int i=0; i<100; i++) {
    executor.submit(() -> log.info(callAPI(input)));
}

开100个线程,每个线程请求100次,总计10000个request。根据总耗时,计算出callAPI()可以处理请求约50个/秒。这个速度显然已经满足不了我们的系统了。

联系上游API开发部门,经过协商,短期来看,可以为我们配置单独的机器来提高生产环境的query速度。从长远来看,

  • 需要联合开发一个batch query的接口,即List callBatchAPI(List inputs),减少调用的次数,节约中间环节的开销。
  • 精简输出Object的参数。原先对象内有30+个参数,有些字段还很长。但是并不是每个参数都有变化的。改进后,输出只需要传回变化的字段就可以了,减少网络传输的时间。
  • 解决 - DB

    不难猜想到,DB也是一条一条调用更新的。优化的策略是batch update。

    以下是模拟测试DB update的部分,单次更新:

    @Test
    public void updateOneByOne() {
        // initialize
        Environment.initialize("qa", "test_batch_update");
        System.out.println("INI DONE, start count time.");
    
        // update
        long start = System.currentTimeMillis();
        for (int i=0; i

    批量更新:

    @Test
    public void updateByBatch() {
        Environment.initialize("qa", "test_batch_update");
        System.out.println("INI DONE, start count time.");
    
        // prep obj
        List dummyObjList = new ArrayList<>();
        for (int i=0; i dummyObjList) {
        int [] updateCounts = testBatchUpdateJdbcTemplate.batchUpdate(
                UPDATE_SQL_WITH_PARAM,
                new BatchPreparedStatementSetter() {
                    @Override
                    public void setValues(PreparedStatement preparedStatement, int i) throws SQLException {
                        preparedStatement.setString(1, dummyObjList.get(i).desc1);
                        preparedStatement.setInt(2, dummyObjList.get(i).id);
                    }
                    @Override
                    public int getBatchSize() {
                        return dummyObjList.size();
                    }
                }
        );
        return updateCounts;
    }

    Spring XML config:

    
    
    
        
    
    
    
        
    

    测试的结果是:对于500条数据,单次更新耗时370s,批量更新耗时9s。批量更新快了约40倍。
    这里的一个坑是:不同数据库,比如生产环境v.s.开发环境,有可能性能表现是不一样的。比如上面的(简化后的)例子是在开发环境下的测试结果,1条数据单次更新大概耗时1.3s,而在生产环境的实际数据是20ms。这时候做优化需要找准baseline,不然搞半天发现用了新方法竟然还比生产环境的旧方法慢,其实是开发的数据库本身相对更慢而已。

    总结

    最终,解决的方案是:一方面,联系上游API部门开发新接口。另一方面,使用batch update优化DB写入。

    题外话

    在解决这个问题的过程中,还看了许多其它的文章,有一篇谈到了Oracle改进sql,update之前先做一个排序,让数据尽可能靠近。(Oracle大数据量更新方法)
    另外,还看了一篇,讲到了修改rewriteBatchedStatements参数,解决Spring jdbcTemplate batch update无效的问题。(jdbcTemplate.batchUpdate批量执行性能差解决)
    虽然最终看下来和本题无关,但还是挺有收获的。

    转载于:https://www.cnblogs.com/maxstack/p/10719447.html

    你可能感兴趣的:(一次大量数据更新的性能优化调研)