- AWS上基于Llama 3模型检测Amazon Redshift里文本数据的语法和语义错误的设计方案
weixin_30777913
数据仓库云计算awsllama
一、技术栈选型核心服务:AmazonRedshift:存储原始文本和检测结果AmazonBedrock:托管Llama370B模型AWSLambda:无服务计算(Python运行时)AmazonS3:中间数据存储AWSStepFunctions:工作流编排辅助工具:psycopg2:RedshiftPython连接器boto3:AWSSDKforPythonPandas:数据批处理JSONSche
- AWS上基于高德API验证Amazon Redshift里国内地址数据正确性的设计方案
weixin_30777913
python数据仓库云计算aws
该方案通过无服务架构实现高可扩展性,结合分页查询和批量更新确保高效处理海量数据,同时通过密钥托管和错误重试机制保障安全性及可靠性。一、技术栈组件技术选型说明计算层AWSLambda无服务器执行,适合事件驱动、按需处理,成本低数据存储AmazonRedshift存储原始地址数据及验证结果API调用高德地理编码API提供地址标准化及验证能力开发语言Python3.9+使用requests处理HTTP请
- 水下 SLAM 定位模组的设计与实现
赵谨言
论文经验分享毕业设计笔记
标题:水下SLAM定位模组的设计与实现内容:1.摘要摘要:本文介绍了水下SLAM定位模组的设计与实现。首先,对水下定位技术的背景和需求进行了分析。然后,详细阐述了模组的设计思路和关键技术,包括传感器选型、数据融合算法等。接着,介绍了模组的实现过程和实验结果,通过实际测试验证了模组的性能和可靠性。最后,对未来的研究方向进行了展望。关键词:水下SLAM;定位模组;传感器;数据融合2.引言2.1.研究背
- ORB-SLAM2源码学习:Tracking.cc:GrabImageStereo、GrabImageRGBD、GrabImageMonocular处理图像
PaLu-LvL
计算机视觉#ORB-SLAM2#局部建图线程计算机视觉人工智能c++ubuntu学习
前言该部分函数在Tracking.cc源文件中定义,用于处理图像。1.函数作用:1.GrabImageStereo函数的主要作用是处理输入的双目图像(左视图和右视图),进行必要的预处理(颜色转换),创建表示当前帧的对象,并执行跟踪操作,最后返回当前帧在世界坐标系下的变换矩阵。cv::MatTracking::GrabImageStereo(constcv::Mat&imRectLeft,const
- Serverless 架构与 AWS Lambda 的应用实践
桂月二二
serverless架构aws
引言随着云计算的普及,传统的服务器管理方式逐渐被更加灵活和高效的技术所取代,Serverless(无服务器)架构便是其中一个备受瞩目的创新。在Serverless架构下,开发者不再需要关注服务器的部署、维护和扩展问题,而是专注于编写业务逻辑。AWSLambda作为亚马逊云服务提供的一项无服务器计算服务,为这一架构的实现提供了强大的支持。本文将深入探讨Serverless架构和AWSLambda的核
- CMake入门
PaLu-LvL
CMakec++计算机视觉ubuntu人工智能学习
前言我们在很多SLAM的源码里都能看到CMake的使用,这个CMake到底是什么呢有什么用呢?一、cmake的简介CMake(CrossplatformMake)是一个开源的跨平台自动化建构系统,用来管理程序构建,不依赖于特定编译器。CMake可以自动化编译源代码、创建库、生成可执行二进制文件等,为开发者节省了大量的时间,可以说是工程实践的必备工具。CMake通过使用简单的配置文件CMakeLis
- 优化ROS包编译流程:处理多工作空间下的路径冲突
YRr YRr
ROSros
ROSNoetic下ORB_SLAM2编译错误分析及解决方案在使用ROSNoetic编译ORB_SLAM2包时,您遇到了如下错误信息:[rosbuild]rospackfoundpackage"ORB_SLAM2"at"/home/lyb/pointcloudmap_ws/src/ORB_SLAM2_modified/Examples/ROS/ORB_SLAM2",butthecurrentdir
- AWS无服务器 应用程序开发—第七章 邮件服务 发布订阅(Amazon SES)
yunquantong
AWS技术awsserverlessSESSNSemail
AmazonSES(SimpleEmailService)AmazonSES是一个高可扩展性、灵活且经济高效的电子邮件发送和接收服务,旨在帮助开发人员和企业通过应用程序发送通知、事务型电子邮件和营销电子邮件。主要功能:发送邮件:支持批量发送电子邮件,适用于营销和大规模通知。接收邮件:通过将接收到的电子邮件存储在AmazonS3、调用AWSLambda函数等方式处理。高可靠性:依托AWS的基础设施,
- 快速上手Serverless架构与FastAPI结合实现自动化移动应用后端
老大白菜
pythonserverless架构fastapi
快速上手Serverless架构与FastAPI结合实现自动化移动应用后端引言随着云计算技术的发展,Serverless架构已经成为构建现代应用的一种流行选择。它允许开发者将更多精力集中在核心业务逻辑上,而无需管理底层基础设施。本文将以AWSLambda和APIGateway为基础,通过FastAPI框架来快速搭建一个移动应用的后端服务。1.Serverless架构概述Serverless架构的核
- Serverless Architecture Boilerplate 使用教程
谢璋声Shirley
ServerlessArchitectureBoilerplate使用教程serverless-architecture-boilerplate:package::zap::rocket:BoilerplatetoorganizeanddeploybigprojectsusingAWSAPIGatewayandAWSLambdawithServerlessFramework项目地址:https:/
- 【SLAM】SLAM技术详解:同步定位与地图构建
steamedobun
计算机视觉SLAM深度学习人工智能目标检测机器学习
引言在机器人技术、自动驾驶、增强现实(AR)和无人机等前沿领域,SLAM(SimultaneousLocalizationandMapping)技术扮演着至关重要的角色。SLAM,即同时定位与地图构建,是一种通过传感器数据实时估计机器人或无人系统自身位置并构建环境地图的技术。本文将详细介绍SLAM技术的原理、应用场景、分类及其优缺点,并对SLAM技术的未来发展进行展望。SLAM技术概述定义与原理S
- 自动驾驶(Automated Driving)系统组成和主要技术--以思维导图形式介绍
大连海事的亲外甥
自动驾驶人工智能机器学习
一、自动驾驶概念介绍自动驾驶是指汽车依靠传感器、高精度地图和复杂的算法等,不需要驾驶员操作而自动完成驾驶的技术。二、自动驾驶系统组成和主要技术架构图思维导图形式绘制1、感知层传感器模块:包括摄像头、激光雷达、毫米波雷达和超声波雷达等,用于获取车辆周围环境的数据,如道路状况、其他车辆、行人和障碍物等。定位传感器模块:包括GNSS(全球导航卫星系统)、INS(惯性导航系统)和视觉SLAM等,用于确定车
- Python软体中在AWS Lambda上部署Python应用:一站式部署指南
清水白石008
pythonPython题库pythonaws开发语言
Python软体中在AWSLambda上部署Python应用:一站式部署指南AWSLambda是亚马逊提供的一个无服务器计算服务,允许开发者在无需管理服务器的情况下运行代码。它自动处理计算资源的配置和扩展,具有高度的可扩展性和灵活性。对于Python开发者来说,AWSLambda为我们提供了一个高效的方式来部署Python应用,尤其是对那些处理事件驱动任务、定时任务或者API服务的应用,Lambd
- SLAM源码分析(八)
wang_yq0728
1024程序员节slam
[email protected],ComputeH21函数,用DLT方法求解单应矩阵H。vP1:参考帧中归一化后的特征点;vP2:当前帧中归一化后的特征点;基本原理:|x'||h1h2h3||x||y'|=a|h4h5h6||y|简写:x'=aHx,a为一个尺度因子1||h7h8h9||1|使用DLT(directlineartranform)求解该模型x'=aHx--->(x
- ORB-SLAM2源码逐行解析系列(二):追踪线程
LDST_CSDN
计算机视觉人工智能自动驾驶
1.Tracking类(1)Tracking类的定义///Examples/Monocular/include/Tracking.hclassTracking{public:/***@brief构造函数**@param[in]pSys系统实例*@param[in]pVoc字典指针*@param[in]pFrameDrawer帧绘制器*@param[in]pMapDrawer地图绘制器*@param
- ORB-SLAM2源码学习:Initializer.cc⑨: Initializer::FindHomography找到最好的单应矩阵H
PaLu-LvL
计算机视觉#ORB-SLAM2#初始化c++计算机视觉opencvubuntu人工智能矩阵学习
前言该函数功能的实现依赖于之前学习的三个函数特征点的坐标归一化、计算单应矩阵H以及它的评分函数。ORB-SLAM2源码学习:Initializer.cc②:Initializer::Normalize坐标归一化-CSDN博客ORB-SLAM2源码学习:Initializer.cc③:Initializer::ComputeH21计算单应矩阵-CSDN博客ORB-SLAM2源码学习:Initiali
- ORB-SLAM2源码学习:Initializer.cc(13): Initializer::ReconstructF用F矩阵恢复R,t及三维点
PaLu-LvL
计算机视觉#ORB-SLAM2#初始化c++计算机视觉人工智能ubuntu学习矩阵线性代数
前言这部分函数的实现依赖于之前学习的的检查三角化结果的函数:ORB-SLAM2源码学习:Initializer.cc⑧:Initializer::CheckRT检验三角化结果-CSDN博客这里通过基础矩阵F来恢复位姿和三维点实际上是借助本质矩阵来进行的,相对于用单应矩阵H恢复位姿和三维点来说,它的解的结构较为简单其解的讨论形式也是比较简单的。1.函数声明boolInitializer::Recon
- ORB-SLAM2源码学习:Initializer.cc(11): Initializer::ReconstructH用H矩阵恢复R, t和三维点
PaLu-LvL
计算机视觉#ORB-SLAM2#初始化c++计算机视觉ubuntu人工智能矩阵学习
前言这个函数的实现依赖于之前学习的检验三角化结果的函数:ORB-SLAM2源码学习:Initializer.cc⑧:Initializer::CheckRT检验三角化结果-CSDN博客位姿可能有多组解,到底哪个才是真正的解呢?方法是实践出真知。根据相应的论文我们分两种情况分别恢复出不同的解,最后得到一个最好的。每种可能的解都需要重复计算一次,最终根据如下条件选择最佳的解:1.最优解成功三角化点数目
- AWS微服务示例项目指南
缪玺彬
AWS微服务示例项目指南aws-microservicesAWSServerlessEvent-drivenMicroserviceswithusingAWSLambda,AWSDynamoDB,AWSAPIGateway,AWSEventBridge,AWSSQS,AWSCDKstandsforCloudDevelopmentKitforIaC—InfrastructureasCodetoola
- 点云从入门到精通技术详解100篇-基于卷积和注意力机制的3D点云特征提取
格图素书
3d
目录知识储备点云获取技术分类一、图像衍生点云二、LiDAR三、RGB-D深度图像传感器基于3D激光slam的点云特征提取为什么要进行点云特征提取特征提取理论与代码编写点云特征提取主体类sample_and_groupfarthest_point_samplequery_ball_pointindex_points前言国内外研究现状卷积神经网络三维卷积神经网络稀疏卷积[21]基于3D点云数据的目标分
- 学习笔记之——3DGS-SLAM系列代码解读
gwpscut
3DGaussianSplatting(3DGS)3DGS深度学习三维重建计算机视觉3d
最近对一系列基于3DGaussianSplatting(3DGS)SLAM的工作的源码进行了测试与解读。为此写下本博客mark一下所有的源码解读以及对应的代码配置与测试记录~其中工作1~5的原理解读见博客:学习笔记之——3DGaussianSplatting及其在SLAM与自动驾驶上的应用调研_3dgaussiansplattingslam-CSDN博客文章浏览阅读5.3k次,点赞53次,收藏92
- 【MotionCap】DROID-SLAM 1 :介绍及安装
等风来不如迎风去
AI入门与实战人工智能SLAHMRDROID-SLAM
DROID-SLAM:DROID-SLAM:DeepVisualSLAMforMonocularDROID-SLAM:适用于单目、立体和RGB-D相机的深度视觉SLAMStereo,andRGB-DCamerashttps://arxiv.org/abs/2108.10869DROID-SLAM:DeepVisualSLAMforMonocular,Stereo,andRGB-DCamerasfi
- VYOS容器运行Uptime Kuma监控
GTaylor
Vyosvyos容器UptimeKuma监控系统无处不容器
添加镜像addcontainerimagelouislam/uptime-kumasudomkdir/config/kumasudochmod777/config/kuma配置setcontainernameUptimeKumadescription'Uptime-Kuma'setcontainernameUptimeKumaimage'docker.io/louislam/uptime-kuma
- 【ORB-SLAM2:九、BA优化】
KeyPan
ORB-SLAM2人工智能计算机视觉机器学习深度学习算法
BA(BundleAdjustment)是SLAM系统中优化位姿和地图点位置的重要技术。通过最小化图结构中的重投影误差,BA在提高地图精度和轨迹优化方面发挥了核心作用。本章将围绕BA优化展开,从图优化工具简介到优化函数分类,再到具体的局部BA和Sim3优化边的解析进行详细阐述。9.1图优化和g2o简介9.1.1图优化的基本概念图优化图优化将SLAM问题建模为一个图结构:节点(Vertices):代
- 【ORB-SLAM2:三、 地图初始化】
KeyPan
ORB-SLAM2数码相机计算机视觉人工智能机器学习深度学习算法
地图初始化是视觉SLAM系统的关键步骤之一,它是整个系统运行的起点。初始化的主要任务是从输入图像数据中构建一个初始地图,为后续的相机位姿估计和场景重建提供基础。无论是单目、双目还是RGB-D相机,地图初始化的结果直接决定了系统的鲁棒性和精度。3.1为什么需要地图初始化3.1.1地图初始化的重要性定义初始参考坐标系地图初始化为SLAM系统提供了一个全局参考坐标系,使后续的位姿估计和地图扩展能够在一致
- ORB-SLAM2:四、 地图点、关键帧、图结构】
KeyPan
ORB-SLAM2计算机视觉人工智能机器学习深度学习算法
地图点、关键帧和图结构是ORB-SLAM系统的核心组成部分,它们共同构建了SLAM系统的空间表示与数据组织方式。本章将详细讨论这些模块及其在系统中的作用和实现方式。4.1地图点4.1.1什么是地图点地图点(MapPoint)是SLAM系统中用来表示环境中三维特征点的抽象概念。这些点是通过相机观测和三角测量得到的,是地图构建的基础。三维位置每个地图点存储其在世界坐标系中的三维坐标P(X,Y,Z)P(
- 【视觉SLAM:六、视觉里程计Ⅰ:特征点法】
KeyPan
视觉SLAM计算机视觉人工智能机器学习数码相机算法深度学习
视觉里程计(VisualOdometry,VO)是通过处理图像序列,估计摄像头在时间上的相对位姿变化的技术。它是视觉SLAM的重要组成部分之一,主要通过提取图像中的信息(如特征点或直接像素强度)来实现相机运动估计。以下从特征点法、2D-2D对极几何、三角测量、3D-2D的PnP方法、3D-3D的ICP方法介绍视觉里程计的核心内容。特征点法特征点法是视觉里程计的经典方法,通过提取图像中的显著特征点,
- 通俗易懂 serverless 架构、微服务架构和云原生架构,并简单代码
Ai君臣
架构架构云原生serverless
文章目录1serverless架构、微服务架构和云原生架构区别1.Serverless架构示例:AWSLambda+APIGateway2.微服务架构示例:Flask微服务3.云原生架构示例:Docker和Kubernetes2Kubernetes中管理多个副本和流量两个关键组件1.Deployment2.Service负载均衡流量管理1serverless架构、微服务架构和云原生架构区别别用代码
- 【视觉惯性SLAM:十五、ORB-SLAM3中的IMU预积分】
KeyPan
视觉惯性SLAM计算机视觉视觉检测
15.1视觉惯性紧耦合15.1.1视觉惯性紧耦合的重要性视觉惯性紧耦合(Visual-InertialTightCoupling)在ORB-SLAM3中的作用不可替代,是实现高鲁棒性和高精度定位的核心技术。单一的视觉SLAM主要依赖于图像特征进行定位和建图,这种方法虽然能够在许多环境中获得良好的效果,但其鲁棒性容易受到动态变化、光照条件恶化以及环境特征稀缺等因素的限制。例如,昏暗场景或快速运动可能
- VSLAM技术实现机器人在不同场景下的精准导航、避障
向阳而生|X
自主导航python计算机视觉
链接:https://developer.orbbec.com.cn/forum_plate_module_details.html?id=998
- Java序列化进阶篇
g21121
java序列化
1.transient
类一旦实现了Serializable 接口即被声明为可序列化,然而某些情况下并不是所有的属性都需要序列化,想要人为的去阻止这些属性被序列化,就需要用到transient 关键字。
- escape()、encodeURI()、encodeURIComponent()区别详解
aigo
JavaScriptWeb
原文:http://blog.sina.com.cn/s/blog_4586764e0101khi0.html
JavaScript中有三个可以对字符串编码的函数,分别是: escape,encodeURI,encodeURIComponent,相应3个解码函数:,decodeURI,decodeURIComponent 。
下面简单介绍一下它们的区别
1 escape()函
- ArcgisEngine实现对地图的放大、缩小和平移
Cb123456
添加矢量数据对地图的放大、缩小和平移Engine
ArcgisEngine实现对地图的放大、缩小和平移:
个人觉得是平移,不过网上的都是漫游,通俗的说就是把一个地图对象从一边拉到另一边而已。就看人说话吧.
具体实现:
一、引入命名空间
using ESRI.ArcGIS.Geometry;
using ESRI.ArcGIS.Controls;
二、代码实现.
- Java集合框架概述
天子之骄
Java集合框架概述
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- 旗正4.0页面跳转传值问题
何必如此
javajsp
跳转和成功提示
a) 成功字段非空forward
成功字段非空forward,不会弹出成功字段,为jsp转发,页面能超链接传值,传输变量时需要拼接。接拼接方式list.jsp?test="+strweightUnit+"或list.jsp?test="+weightUnit+&qu
- 全网唯一:移动互联网服务器端开发课程
cocos2d-x小菜
web开发移动开发移动端开发移动互联程序员
移动互联网时代来了! App市场爆发式增长为Web开发程序员带来新一轮机遇,近两年新增创业者,几乎全部选择了移动互联网项目!传统互联网企业中超过98%的门户网站已经或者正在从单一的网站入口转向PC、手机、Pad、智能电视等多端全平台兼容体系。据统计,AppStore中超过85%的App项目都选择了PHP作为后端程
- Log4J通用配置|注意问题 笔记
7454103
DAOapachetomcatlog4jWeb
关于日志的等级 那些去 百度就知道了!
这几天 要搭个新框架 配置了 日志 记下来 !做个备忘!
#这里定义能显示到的最低级别,若定义到INFO级别,则看不到DEBUG级别的信息了~!
log4j.rootLogger=INFO,allLog
# DAO层 log记录到dao.log 控制台 和 总日志文件
log4j.logger.DAO=INFO,dao,C
- SQLServer TCP/IP 连接失败问题 ---SQL Server Configuration Manager
darkranger
sqlcwindowsSQL ServerXP
当你安装完之后,连接数据库的时候可能会发现你的TCP/IP 没有启动..
发现需要启动客户端协议 : TCP/IP
需要打开 SQL Server Configuration Manager...
却发现无法打开 SQL Server Configuration Manager..??
解决方法: C:\WINDOWS\system32目录搜索framedyn.
- [置顶] 做有中国特色的程序员
aijuans
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有些技术书读得可
- document.domain 跨域问题
avords
document
document.domain用来得到当前网页的域名。比如在地址栏里输入:javascript:alert(document.domain); //www.315ta.com我们也可以给document.domain属性赋值,不过是有限制的,你只能赋成当前的域名或者基础域名。比如:javascript:alert(document.domain = "315ta.com");
- 关于管理软件的一些思考
houxinyou
管理
工作好多看年了,一直在做管理软件,不知道是我最开始做的时候产生了一些惯性的思维,还是现在接触的管理软件水平有所下降.换过好多年公司,越来越感觉现在的管理软件做的越来越乱.
在我看来,管理软件不论是以前的结构化编程,还是现在的面向对象编程,不管是CS模式,还是BS模式.模块的划分是很重要的.当然,模块的划分有很多种方式.我只是以我自己的划分方式来说一下.
做为管理软件,就像现在讲究MVC这
- NoSQL数据库之Redis数据库管理(String类型和hash类型)
bijian1013
redis数据库NoSQL
一.Redis的数据类型
1.String类型及操作
String是最简单的类型,一个key对应一个value,string类型是二进制安全的。Redis的string可以包含任何数据,比如jpg图片或者序列化的对象。
Set方法:设置key对应的值为string类型的value
- Tomcat 一些技巧
征客丶
javatomcatdos
以下操作都是在windows 环境下
一、Tomcat 启动时配置 JAVA_HOME
在 tomcat 安装目录,bin 文件夹下的 catalina.bat 或 setclasspath.bat 中添加
set JAVA_HOME=JAVA 安装目录
set JRE_HOME=JAVA 安装目录/jre
即可;
二、查看Tomcat 版本
在 tomcat 安装目
- 【Spark七十二】Spark的日志配置
bit1129
spark
在测试Spark Streaming时,大量的日志显示到控制台,影响了Spark Streaming程序代码的输出结果的查看(代码中通过println将输出打印到控制台上),可以通过修改Spark的日志配置的方式,不让Spark Streaming把它的日志显示在console
在Spark的conf目录下,把log4j.properties.template修改为log4j.p
- Haskell版冒泡排序
bookjovi
冒泡排序haskell
面试的时候问的比较多的算法题要么是binary search,要么是冒泡排序,真的不想用写C写冒泡排序了,贴上个Haskell版的,思维简单,代码简单,下次谁要是再要我用C写冒泡排序,直接上个haskell版的,让他自己去理解吧。
sort [] = []
sort [x] = [x]
sort (x:x1:xs)
| x>x1 = x1:so
- java 路径 配置文件读取
bro_feng
java
这几天做一个项目,关于路径做如下笔记,有需要供参考。
取工程内的文件,一般都要用相对路径,这个自然不用多说。
在src统计目录建配置文件目录res,在res中放入配置文件。
读取文件使用方式:
1. MyTest.class.getResourceAsStream("/res/xx.properties")
2. properties.load(MyTest.
- 读《研磨设计模式》-代码笔记-简单工厂模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 个人理解:简单工厂模式就是IOC;
* 客户端要用到某一对象,本来是由客户创建的,现在改成由工厂创建,客户直接取就好了
*/
interface IProduct {
- SVN与JIRA的关联
chenyu19891124
SVN
SVN与JIRA的关联一直都没能装成功,今天凝聚心思花了一天时间整合好了。下面是自己整理的步骤:
一、搭建好SVN环境,尤其是要把SVN的服务注册成系统服务
二、装好JIRA,自己用是jira-4.3.4破解版
三、下载SVN与JIRA的插件并解压,然后拷贝插件包下lib包里的三个jar,放到Atlassian\JIRA 4.3.4\atlassian-jira\WEB-INF\lib下,再
- JWFDv0.96 最新设计思路
comsci
数据结构算法工作企业应用公告
随着工作流技术的发展,工作流产品的应用范围也不断的在扩展,开始进入了像金融行业(我已经看到国有四大商业银行的工作流产品招标公告了),实时生产控制和其它比较重要的工程领域,而
- vi 保存复制内容格式粘贴
daizj
vi粘贴复制保存原格式不变形
vi是linux中非常好用的文本编辑工具,功能强大无比,但对于复制带有缩进格式的内容时,粘贴的时候内容错位很严重,不会按照复制时的格式排版,vi能不能在粘贴时,按复制进的格式进行粘贴呢? 答案是肯定的,vi有一个很强大的命令可以实现此功能 。
在命令模式输入:set paste,则进入paste模式,这样再进行粘贴时
- shell脚本运行时报错误:/bin/bash^M: bad interpreter 的解决办法
dongwei_6688
shell脚本
出现原因:windows上写的脚本,直接拷贝到linux系统上运行由于格式不兼容导致
解决办法:
1. 比如文件名为myshell.sh,vim myshell.sh
2. 执行vim中的命令 : set ff?查看文件格式,如果显示fileformat=dos,证明文件格式有问题
3. 执行vim中的命令 :set fileformat=unix 将文件格式改过来就可以了,然后:w
- 高一上学期难记忆单词
dcj3sjt126com
wordenglish
honest 诚实的;正直的
argue 争论
classical 古典的
hammer 锤子
share 分享;共有
sorrow 悲哀;悲痛
adventure 冒险
error 错误;差错
closet 壁橱;储藏室
pronounce 发音;宣告
repeat 重做;重复
majority 大多数;大半
native 本国的,本地的,本国
- hibernate查询返回DTO对象,DTO封装了多个pojo对象的属性
frankco
POJOhibernate查询DTO
DTO-数据传输对象;pojo-最纯粹的java对象与数据库中的表一一对应。
简单讲:DTO起到业务数据的传递作用,pojo则与持久层数据库打交道。
有时候我们需要查询返回DTO对象,因为DTO
- Partition List
hcx2013
partition
Given a linked list and a value x, partition it such that all nodes less than x come before nodes greater than or equal to x.
You should preserve the original relative order of th
- Spring MVC测试框架详解——客户端测试
jinnianshilongnian
上一篇《Spring MVC测试框架详解——服务端测试》已经介绍了服务端测试,接下来再看看如果测试Rest客户端,对于客户端测试以前经常使用的方法是启动一个内嵌的jetty/tomcat容器,然后发送真实的请求到相应的控制器;这种方式的缺点就是速度慢;自Spring 3.2开始提供了对RestTemplate的模拟服务器测试方式,也就是说使用RestTemplate测试时无须启动服务器,而是模拟一
- 关于推荐个人观点
liyonghui160com
推荐系统关于推荐个人观点
回想起来,我也做推荐了3年多了,最近公司做了调整招聘了很多算法工程师,以为需要多么高大上的算法才能搭建起来的,从实践中走过来,我只想说【不是这样的】
第一次接触推荐系统是在四年前入职的时候,那时候,机器学习和大数据都是没有的概念,什么大数据处理开源软件根本不存在,我们用多台计算机web程序记录用户行为,用.net的w
- 不间断旋转的动画
pangyulei
动画
CABasicAnimation* rotationAnimation;
rotationAnimation = [CABasicAnimation animationWithKeyPath:@"transform.rotation.z"];
rotationAnimation.toValue = [NSNumber numberWithFloat: M
- 自定义annotation
sha1064616837
javaenumannotationreflect
对象有的属性在页面上可编辑,有的属性在页面只可读,以前都是我们在页面上写死的,时间一久有时候会混乱,此处通过自定义annotation在类属性中定义。越来越发现Java的Annotation真心很强大,可以帮我们省去很多代码,让代码看上去简洁。
下面这个例子 主要用到了
1.自定义annotation:@interface,以及几个配合着自定义注解使用的几个注解
2.简单的反射
3.枚举
- Spring 源码
up2pu
spring
1.Spring源代码
https://github.com/SpringSource/spring-framework/branches/3.2.x
注:兼容svn检出
2.运行脚本
import-into-eclipse.bat
注:需要设置JAVA_HOME为jdk 1.7
build.gradle
compileJava {
sourceCompatibilit
- 利用word分词来计算文本相似度
yangshangchuan
wordword分词文本相似度余弦相似度简单共有词
word分词提供了多种文本相似度计算方式:
方式一:余弦相似度,通过计算两个向量的夹角余弦值来评估他们的相似度
实现类:org.apdplat.word.analysis.CosineTextSimilarity
用法如下:
String text1 = "我爱购物";
String text2 = "我爱读书";
String text3 =