POJ2728 Desert King - (0/1)分数规划

题目求一种方案,使得图全连通并且所有边费用与距离之商最小
∑ i ∈ e c o s t i \sum_{i∈e}cost_i iecosti除以 ∑ i ∈ e d i s i \sum_{i∈e}dis_i iedisi最小
可以考虑二分求解
可以假设这个值小于等于L时存在一个解,然后检查是否存在这个解,如果不存在说明L取小了
问题是为什么要假设“存在”,事实上如果假设“任意”,那么就要检查每种可能都要小于,就很麻烦,所以把求任意改为求存在是最好的
但是这个解很难找。。。又不能一个个检验,但是除了L以外的数都是输入数据。
对式子进行变形,得:
L ∗ ∑ i ∈ e d i s i − ∑ i ∈ e c o s t i > = 0 L*\sum_{i∈e}dis_i-\sum_{i∈e}cost_i >= 0 Liedisiiecosti>=0
∑ i ∈ e d i s i ∗ L − ∑ i ∈ e c o s t i > = 0 \sum_{i∈e}dis_i*L-\sum_{i∈e}cost_i >= 0 iedisiLiecosti>=0
分数规划要通过列式子来找到某个关系,最后把存在这个解这个求解问题转化为判定正负问题
对式子要灵活变换 把问题转化为求存在问题
比如说把某些问题转化为 求负环,若求得负环,则此答案可行,这样一举解决了判断是否存在解的问题 形式上就是乘个负号,把式子变为小于等于0
另外说下EPS的作用,因为二分的是实数,而因为精度问题l和r永远不会重合,这时就需要设EPS,当l和r的差小于EPS时认为他们相同,而判断正负的时候不需要,因为这时说明L确实取小了
相应的还有愤怒的小鸟那题,求出的抛物线因为精度打不到目标,但按理来说是该打到的
##注意二分的时候实数二分或许用位运算来代替(l+r)/2不太好。。。毕竟不是整数型
哎,L的上界难以估计,大了就会T,我取到1000卡了过去。。。

#include 
#include 
#include 
#include 
#include 
using namespace std;
#define debug(x) cerr << #x << "=" << x << endl;
const int MAXN = 1000 + 10;
const double EPS = 1e-6;
const int INF = (1<<30) / 3;
typedef long long ll; 
int n,last[MAXN],tot,fa[MAXN],vis[MAXN];
double ans, esum, l,ttem[MAXN][MAXN],ddis[MAXN][MAXN],d[MAXN],gra[MAXN][MAXN];

struct viii{
    int x,y,z;
}vil[MAXN];

int abab(int x) {
    if(x < 0) return -x;
    return x;
}

void prim() {
	for(int i=1; i<=n; i++) {
		d[i] = -INF;
	}
	memset(vis, 0, sizeof(vis));
	for(int i=1; i<=n; i++) {
		int x = 0;
		for(int j=1; j<=n; j++) {
			if(!vis[j] && (x == 0 || d[j] > d[x])) x = j;
		}
		vis[x] = 1;
		for(int j=1; j<=n; j++) {
			if(!vis[j]) d[j] = max(d[j], gra[x][j]);
		}
	}
}

int main() {
    while(1) {
	    esum = 0.0;
	    cin >> n; 
	    if(n == 0) break;
	    for(int i=1; i<=n; i++) {
	        cin >> vil[i].x >> vil[i].y >> vil[i].z; 
	    }
	    for(int i=1; i<=n; i++) {
	        for(int j=1; j<=n; j++) {
	            double temp = 0;
	            int sum = 0;
	            int x1 = vil[i].x, y1 = vil[i].y, x2 = vil[j].x, y2 = vil[j].y;
	            sum = (x1-x2) * (x1-x2) + (y1-y2) * (y1-y2);
	            temp = (double)sum;
	            temp = sqrt(temp);
	            int dist = abab(vil[i].z - vil[j].z);
	            ttem[i][j] = ttem[j][i] = dist;
	            ddis[i][j] = ddis[j][i] = temp;
	            esum += temp;
	        }
	    }
	    //double l = 0, r = esum;
	    double l = 0, r = 1000;
	    while(r-l >= EPS) {
	        double mid = (l+r)/2;
	        tot = 0;
	        for(int i=1; i<=n; i++) {
	    		for(int j=1; j<=n; j++) {
	    			if(i != j)
	    				gra[i][j] = gra[j][i] = ddis[i][j] * mid - ttem[i][j];
	    		}
	    	}
	        double mst = 0.0;
	        prim();
	        for(int i=2; i<=n; i++) {
	        	mst += d[i];
	        }
	        if(mst >= 0) {
	            r = mid;
	            ans = mid;
	        } else {
	            l = mid;
	        }
	    }
	    printf("%.3lf\n", ans);
    }
    return 0;
}

你可能感兴趣的:(NOIP,图论,二分答案,分数规划,生成树)