数独是近年来非常流行的游戏,有很多解法,在mathworks的file exchange里面可以找到很多,但我觉得下面的这个递归解法是比较简洁的。
来自Mathworks
function S = sodoku(M,S)
%[S,Mout] = sodoku(M,[S])
%
%A recursive program that solves 'sodoku' puzzles.
%
%Inputs: M partially filled 9x9 matrix with zeros in 'blank' cells
% S list of solutions (only used during recursive calls)
%
%Outputs: S list of solutions
%
%Example:
%
%M = [0,0,1,9,0,0,0,0,8;6,0,0,0,8,5,0,3,0;0,0,7,0,6,0,1,0,0;...
% 0,3,4,0,9,0,0,0,0;0,0,0,5,0,4,0,0,0;0,0,0,0,1,0,4,2,0;...
% 0,0,5,0,7,0,9,0,0;0,1,0,8,4,0,0,0,7;7,0,0,0,0,9,2,0,0];
%
%S = sodoku(M)
%
%Written by G.M. Boynton, 6/3/05
%If this is the first call, then zero out the solution matrix
if ~exist('S','var')
S = zeros([size(M),0]);
end
%find the first blank cell, or zero
firstId = find(M(:)==0, 1 );
if isempty(firstId) %If there aren't any zeros, then we have a solution!
S(:,:,size(S,3)+1) = M; %save it
else %calculate the list of all valid numbers that can go into this cell
[i,j] = ind2sub([9,9],firstId);
for k=1:9 %loop through all 9 possibilities
ii = (ceil(i/3)-1)*3+1;
jj = (ceil(j/3)-1)*3+1;
mm = M(ii:ii+2,jj:jj+2); %these are the indices into the 3x3 block containing that cell
if sum(M(i,:)==k)==0 && sum(M(:,j)==k)==0 && sum(mm(:)==k)==0 %OK for column, row, and 3x3 block
M(i,j) = k; %put this number in,
S = sodoku(M,S); %and call this function recursively!
end
end
end