TensorRT的第一个例子

目录

  • 一、工程介绍
  • 二、这个工程如何工作起来
  • 三、tensorRT API的层和节点
  • 四、运行这个示例

一、工程介绍

这个示例sampleMNIST是一个简单的hello world示例,它执行了基本的安装工作,使用Caffe解析器初始化TensorRT。这是一个用C++完成tensorRT加速的示例。

二、这个工程如何工作起来

这个示例使用已经在MNIST dataset数据集训练好的Caffe模型。
包含以下内容:

  1. 执行基本的安装,用Caffe parser初始化tensorRT。
  2. 用Caffe parser导入训练过的Caffe model。
  3. 对输入进行预处理并存储在缓冲区内。
  4. 建立引擎。
  5. 序列化和反序列化引擎。
  6. 利用引擎推理一张图片。

为了验证引擎是否正常工作,此示例随机选取一个28x28的数字图片,并使用它创建的引擎对其运行推断。神经网络输出推理结果的数字,并显示这个数字。

三、tensorRT API的层和节点

该示例当中,下面这些层被用到:
Activation layer 激活层
Convolution layer 卷积层
FullyConnected layer 全连接层
Pooling layer 池化层
Scale layer Scale 层
SoftMax layer SoftMax 层

四、运行这个示例

该示例需要读取Caffe 的三个文件来建立网络,加速和推理。
mnist.prototxt
mnist.caffemodel
mnist_mean.binaryproto
在jetson-nano里执行下面的步骤:
(jetson-nano的镜像采用这篇博客里的《JETSON-Nano刷机运行deepstream4.0的demo》https://blog.csdn.net/shajiayu1/article/details/102669346)

  1. cd /usr/src/tensorrt/samples/sampleMNIST
  2. sudo make
  3. cd /usr/src/tensorrt/bin
  4. ./sample_mnist

    从上图可以看到输入图片是数字2推理结果也是2。

主函数的代码如下:
从大的方面讲一共是3块的内容
1.首先是建立引擎
2.执行推理
3.释放资源

int main(int argc, char** argv)
{
    samplesCommon::Args args;
    bool argsOK = samplesCommon::parseArgs(args, argc, argv);
    if (args.help)
    {
        printHelpInfo();
        return EXIT_SUCCESS;
    }
    if (!argsOK)
    {
        gLogError << "Invalid arguments" << std::endl;
        printHelpInfo();
        return EXIT_FAILURE;
    }

    auto sampleTest = gLogger.defineTest(gSampleName, argc, const_cast<const char**>(argv));

    gLogger.reportTestStart(sampleTest);

    MNISTSampleParams params = initializeSampleParams(args);//初始化参数

    SampleMNIST sample(params);//建立对象
    gLogInfo << "Building and running a GPU inference engine for MNIST" << std::endl;

    if (!sample.build())//建立引擎
    {
        return gLogger.reportFail(sampleTest);
    }

    if (!sample.infer())//开始推理
    {
        return gLogger.reportFail(sampleTest);
    }

    if (!sample.teardown())//释放资源
    {
        return gLogger.reportFail(sampleTest);
    }

    return gLogger.reportPass(sampleTest);
}

其他的代码如下:

class SampleMNIST
{
    template <typename T>
    using SampleUniquePtr = std::unique_ptr<T, samplesCommon::InferDeleter>;

public:
    SampleMNIST(const MNISTSampleParams& params)
        : mParams(params)
    {
    }

    //!
    //! \brief Function builds the network engine
    //!
    bool build();

    //!
    //! \brief This function runs the TensorRT inference engine for this sample
    //!
    bool infer();

    //!
    //! \brief This function can be used to clean up any state created in the sample class
    //!
    bool teardown();

private:
    //!
    //! \brief This function uses a Caffe parser to create the MNIST Network and marks the
    //!        output layers
    //!
    void constructNetwork(SampleUniquePtr<nvinfer1::IBuilder>& builder, SampleUniquePtr<nvinfer1::INetworkDefinition>& network, SampleUniquePtr<nvcaffeparser1::ICaffeParser>& parser);

    //!
    //! \brief Reads the input and mean data, preprocesses, and stores the result in a managed buffer
    //!
    bool processInput(const samplesCommon::BufferManager& buffers, const std::string& inputTensorName, int inputFileIdx) const;

    //!
    //! \brief Verifies that the output is correct and prints it
    //!
    bool verifyOutput(const samplesCommon::BufferManager& buffers, const std::string& outputTensorName, int groundTruthDigit) const;

    std::shared_ptr<nvinfer1::ICudaEngine> mEngine = nullptr; //!< The TensorRT engine used to run the network

    MNISTSampleParams mParams; //!< The parameters for the sample.

    nvinfer1::Dims mInputDims; //!< The dimensions of the input to the network.

    SampleUniquePtr<nvcaffeparser1::IBinaryProtoBlob> mMeanBlob; //! the mean blob, which we need to keep around until build is done
};

//!
//! \brief This function creates the network, configures the builder and creates the network engine
//!
//! \details This function creates the MNIST network by parsing the caffe model and builds
//!          the engine that will be used to run MNIST (mEngine)
//!
//! \return Returns true if the engine was created successfully and false otherwise
//!
bool SampleMNIST::build()
{
    auto builder = SampleUniquePtr<nvinfer1::IBuilder>(nvinfer1::createInferBuilder(gLogger.getTRTLogger()));
	//创建builder
    if (!builder)
        return false;

    auto network = SampleUniquePtr<nvinfer1::INetworkDefinition>(builder->createNetwork());
	//通过builder创建network
    if (!network)
        return false;

    auto parser = SampleUniquePtr<nvcaffeparser1::ICaffeParser>(nvcaffeparser1::createCaffeParser());
	//创建parser
    if (!parser)
        return false;
    //解析模型文件等和创建填充网络层
    constructNetwork(builder, network, parser);//
    builder->setMaxBatchSize(mParams.batchSize);//builder的参数设置
    builder->setMaxWorkspaceSize(16_MB);
    builder->allowGPUFallback(true);
    builder->setFp16Mode(mParams.fp16);
    builder->setInt8Mode(mParams.int8);
    builder->setStrictTypeConstraints(true);
    
    samplesCommon::enableDLA(builder.get(), mParams.dlaCore);

    mEngine = std::shared_ptr<nvinfer1::ICudaEngine>(builder->buildCudaEngine(*network), samplesCommon::InferDeleter());
	//创建引擎

    if (!mEngine)
        return false;

    assert(network->getNbInputs() == 1);
    mInputDims = network->getInput(0)->getDimensions();//网络输入的大小
    assert(mInputDims.nbDims == 3);

    return true;
}

//!
//! \brief Reads the input and mean data, preprocesses, and stores the result in a managed buffer
//!  //读取输入图片,预处理,然后存储到buffer里
bool SampleMNIST::processInput(const samplesCommon::BufferManager& buffers, const std::string& inputTensorName, int inputFileIdx) const
{
    const int inputH = mInputDims.d[1];
    const int inputW = mInputDims.d[2];

    // Read a random digit file
    srand(unsigned(time(nullptr)));
    std::vector<uint8_t> fileData(inputH * inputW);
    readPGMFile(locateFile(std::to_string(inputFileIdx) + ".pgm", mParams.dataDirs), fileData.data(), inputH, inputW);//读取随机选择的那张图片

    // Print ASCII representation of digit
    gLogInfo << "Input:\n";
    for (int i = 0; i < inputH * inputW; i++)
        gLogInfo << (" .:-=+*#%@"[fileData[i] / 26]) << (((i + 1) % inputW) ? "" : "\n");
    gLogInfo << std::endl;

    float* hostInputBuffer = static_cast<float*>(buffers.getHostBuffer(inputTensorName));

    for (int i = 0; i < inputH * inputW; i++)
        hostInputBuffer[i] = float(fileData[i]);//填充数据到缓存

    return true;
}

//!
//! \brief Verifies that the output is correct and prints it
//!//检车输出是否正确并打印
bool SampleMNIST::verifyOutput(const samplesCommon::BufferManager& buffers, const std::string& outputTensorName, int groundTruthDigit) const
{
    const float* prob = static_cast<const float*>(buffers.getHostBuffer(outputTensorName));

    // Print histogram of the output distribution
    gLogInfo << "Output:\n";
    float val{0.0f};
    int idx{0};
    for (unsigned int i = 0; i < 10; i++)
    {
        val = std::max(val, prob[i]);
        if (val == prob[i])
            idx = i;
        gLogInfo << i << ": " << std::string(int(std::floor(prob[i] * 10 + 0.5f)), '*') << "\n";
    }
    gLogInfo << std::endl;

    return (idx == groundTruthDigit && val > 0.9f);
}

//!
//! \brief This function uses a caffe parser to create the MNIST Network and marks the
//!        output layers
//!
//! \param network Pointer to the network that will be populated with the MNIST network
//!
//! \param builder Pointer to the engine builder
//!//用caffe parser解析模型文件和配置文件等去创建MNIST Network。
void SampleMNIST::constructNetwork(SampleUniquePtr<nvinfer1::IBuilder>& builder, SampleUniquePtr<nvinfer1::INetworkDefinition>& network, SampleUniquePtr<nvcaffeparser1::ICaffeParser>& parser)
{
    const nvcaffeparser1::IBlobNameToTensor* blobNameToTensor = parser->parse(
        locateFile(mParams.prototxtFileName, mParams.dataDirs).c_str(),
        locateFile(mParams.weightsFileName, mParams.dataDirs).c_str(),
        *network,
        nvinfer1::DataType::kFLOAT);

    for (auto& s : mParams.outputTensorNames)
    {
        network->markOutput(*blobNameToTensor->find(s.c_str()));//标记输出层
    }

    // add mean subtraction to the beginning of the network
    Dims inputDims = network->getInput(0)->getDimensions();
    mMeanBlob = SampleUniquePtr<nvcaffeparser1::IBinaryProtoBlob>(parser->parseBinaryProto(locateFile(mParams.meanFileName, mParams.dataDirs).c_str()));
    Weights meanWeights{DataType::kFLOAT, mMeanBlob->getData(), inputDims.d[1] * inputDims.d[2]};
    // For this sample, a large range based on the mean data is chosen and applied to the entire network.
    // The preferred method is use scales computed based on a representative data set
    // and apply each one individually based on the tensor. The range here is large enough for the
    // network, but is chosen for example purposes only.
    float maxMean = samplesCommon::getMaxValue(static_cast<const float*>(meanWeights.values), samplesCommon::volume(inputDims));

    auto mean = network->addConstant(Dims3(1, inputDims.d[1], inputDims.d[2]), meanWeights);
    auto meanSub = network->addElementWise(*network->getInput(0), *mean->getOutput(0), ElementWiseOperation::kSUB);
    network->getLayer(0)->setInput(0, *meanSub->getOutput(0));
    samplesCommon::setAllTensorScales(network.get(), maxMean, maxMean);
}

//!
//! \brief This function runs the TensorRT inference engine for this sample
//!
//! \details This function is the main execution function of the sample. It allocates
//!          the buffer, sets inputs, executes the engine, and verifies the output.
//!
bool SampleMNIST::infer()//推理的代码
{
    // Create RAII buffer manager object
    samplesCommon::BufferManager buffers(mEngine, mParams.batchSize);//首先创建buffer

    auto context = SampleUniquePtr<nvinfer1::IExecutionContext>(mEngine->createExecutionContext());
    if (!context)
    {
        return false;
    }

    // Pick a random digit to try to infer
    srand(time(NULL));
    const int digit = rand() % 10;//随机选取一个数字

    // Read the input data into the managed buffers
    // There should be just 1 input tensor
    assert(mParams.inputTensorNames.size() == 1);
    if (!processInput(buffers, mParams.inputTensorNames[0], digit))//读取输入数据
        return false;

    // Create CUDA stream for the execution of this inference.
    cudaStream_t stream;
    CHECK(cudaStreamCreate(&stream));

    // Asynchronously copy data from host input buffers to device input buffers
    buffers.copyInputToDeviceAsync(stream);//异步把数据从cpu拷贝到GPU

    // Asynchronously enqueue the inference work
    if (!context->enqueue(mParams.batchSize, buffers.getDeviceBindings().data(), stream, nullptr))
        return false;//异步执行推理工作

    // Asynchronously copy data from device output buffers to host output buffers
    buffers.copyOutputToHostAsync(stream);//异步拷贝数据从GPU到CPU

    // Wait for the work in the stream to complete
    cudaStreamSynchronize(stream);//等待流处理工作完成

    // Release stream
    cudaStreamDestroy(stream);//释放stream

    // Check and print the output of the inference
    // There should be just one output tensor
    assert(mParams.outputTensorNames.size() == 1);
    bool outputCorrect = verifyOutput(buffers, mParams.outputTensorNames[0], digit);//检查结果

    return outputCorrect;
}

//!
//! \brief This function can be used to clean up any state created in the sample class
//!
bool SampleMNIST::teardown()
{
    //! Clean up the libprotobuf files as the parsing is complete
    //! \note It is not safe to use any other part of the protocol buffers library after
    //! ShutdownProtobufLibrary() has been called.
    nvcaffeparser1::shutdownProtobufLibrary();
    return true;
}

//!
//! \brief This function initializes members of the params struct using the command line args
//!//接收命令行的参数去初始化params的成员参数
MNISTSampleParams initializeSampleParams(const samplesCommon::Args& args)
{
    MNISTSampleParams params;
    if (args.dataDirs.size() != 0) //!< Use the data directory provided by the user
        params.dataDirs = args.dataDirs;
    else //!< Use default directories if user hasn't provided directory paths
    {
        params.dataDirs.push_back("data/mnist/");
        params.dataDirs.push_back("data/samples/mnist/");
    }
    params.prototxtFileName = "mnist.prototxt";
    params.weightsFileName = "mnist.caffemodel";
    params.meanFileName = "mnist_mean.binaryproto";
    params.inputTensorNames.push_back("data");//data填充到inputTensorNames
    params.batchSize = 1;
    params.outputTensorNames.push_back("prob");//prob填充到outputTensorNames
    params.dlaCore = args.useDLACore;
    params.int8 = args.runInInt8;
    params.fp16 = args.runInFp16;

    return params;
}

//!
//! \brief This function prints the help information for running this sample
//!
void printHelpInfo()
{
    std::cout << "Usage: ./sample_mnist [-h or --help] [-d or --datadir=] [--useDLACore=]\n";
    std::cout << "--help          Display help information\n";
    std::cout << "--datadir       Specify path to a data directory, overriding the default. This option can be used multiple times to add multiple directories. If no data directories are given, the default is to use (data/samples/mnist/, data/mnist/)" << std::endl;
    std::cout << "--useDLACore=N  Specify a DLA engine for layers that support DLA. Value can range from 0 to n-1, where n is the number of DLA engines on the platform." << std::endl;
    std::cout << "--int8          Run in Int8 mode.\n";
    std::cout << "--fp16          Run in FP16 mode.\n";
}



你可能感兴趣的:(JETSON-NANO)