这个示例sampleMNIST是一个简单的hello world示例,它执行了基本的安装工作,使用Caffe解析器初始化TensorRT。这是一个用C++完成tensorRT加速的示例。
这个示例使用已经在MNIST dataset数据集训练好的Caffe模型。
包含以下内容:
为了验证引擎是否正常工作,此示例随机选取一个28x28的数字图片,并使用它创建的引擎对其运行推断。神经网络输出推理结果的数字,并显示这个数字。
该示例当中,下面这些层被用到:
Activation layer 激活层
Convolution layer 卷积层
FullyConnected layer 全连接层
Pooling layer 池化层
Scale layer Scale 层
SoftMax layer SoftMax 层
该示例需要读取Caffe 的三个文件来建立网络,加速和推理。
mnist.prototxt
mnist.caffemodel
mnist_mean.binaryproto
在jetson-nano里执行下面的步骤:
(jetson-nano的镜像采用这篇博客里的《JETSON-Nano刷机运行deepstream4.0的demo》https://blog.csdn.net/shajiayu1/article/details/102669346)
主函数的代码如下:
从大的方面讲一共是3块的内容
1.首先是建立引擎
2.执行推理
3.释放资源
int main(int argc, char** argv)
{
samplesCommon::Args args;
bool argsOK = samplesCommon::parseArgs(args, argc, argv);
if (args.help)
{
printHelpInfo();
return EXIT_SUCCESS;
}
if (!argsOK)
{
gLogError << "Invalid arguments" << std::endl;
printHelpInfo();
return EXIT_FAILURE;
}
auto sampleTest = gLogger.defineTest(gSampleName, argc, const_cast<const char**>(argv));
gLogger.reportTestStart(sampleTest);
MNISTSampleParams params = initializeSampleParams(args);//初始化参数
SampleMNIST sample(params);//建立对象
gLogInfo << "Building and running a GPU inference engine for MNIST" << std::endl;
if (!sample.build())//建立引擎
{
return gLogger.reportFail(sampleTest);
}
if (!sample.infer())//开始推理
{
return gLogger.reportFail(sampleTest);
}
if (!sample.teardown())//释放资源
{
return gLogger.reportFail(sampleTest);
}
return gLogger.reportPass(sampleTest);
}
其他的代码如下:
class SampleMNIST
{
template <typename T>
using SampleUniquePtr = std::unique_ptr<T, samplesCommon::InferDeleter>;
public:
SampleMNIST(const MNISTSampleParams& params)
: mParams(params)
{
}
//!
//! \brief Function builds the network engine
//!
bool build();
//!
//! \brief This function runs the TensorRT inference engine for this sample
//!
bool infer();
//!
//! \brief This function can be used to clean up any state created in the sample class
//!
bool teardown();
private:
//!
//! \brief This function uses a Caffe parser to create the MNIST Network and marks the
//! output layers
//!
void constructNetwork(SampleUniquePtr<nvinfer1::IBuilder>& builder, SampleUniquePtr<nvinfer1::INetworkDefinition>& network, SampleUniquePtr<nvcaffeparser1::ICaffeParser>& parser);
//!
//! \brief Reads the input and mean data, preprocesses, and stores the result in a managed buffer
//!
bool processInput(const samplesCommon::BufferManager& buffers, const std::string& inputTensorName, int inputFileIdx) const;
//!
//! \brief Verifies that the output is correct and prints it
//!
bool verifyOutput(const samplesCommon::BufferManager& buffers, const std::string& outputTensorName, int groundTruthDigit) const;
std::shared_ptr<nvinfer1::ICudaEngine> mEngine = nullptr; //!< The TensorRT engine used to run the network
MNISTSampleParams mParams; //!< The parameters for the sample.
nvinfer1::Dims mInputDims; //!< The dimensions of the input to the network.
SampleUniquePtr<nvcaffeparser1::IBinaryProtoBlob> mMeanBlob; //! the mean blob, which we need to keep around until build is done
};
//!
//! \brief This function creates the network, configures the builder and creates the network engine
//!
//! \details This function creates the MNIST network by parsing the caffe model and builds
//! the engine that will be used to run MNIST (mEngine)
//!
//! \return Returns true if the engine was created successfully and false otherwise
//!
bool SampleMNIST::build()
{
auto builder = SampleUniquePtr<nvinfer1::IBuilder>(nvinfer1::createInferBuilder(gLogger.getTRTLogger()));
//创建builder
if (!builder)
return false;
auto network = SampleUniquePtr<nvinfer1::INetworkDefinition>(builder->createNetwork());
//通过builder创建network
if (!network)
return false;
auto parser = SampleUniquePtr<nvcaffeparser1::ICaffeParser>(nvcaffeparser1::createCaffeParser());
//创建parser
if (!parser)
return false;
//解析模型文件等和创建填充网络层
constructNetwork(builder, network, parser);//
builder->setMaxBatchSize(mParams.batchSize);//builder的参数设置
builder->setMaxWorkspaceSize(16_MB);
builder->allowGPUFallback(true);
builder->setFp16Mode(mParams.fp16);
builder->setInt8Mode(mParams.int8);
builder->setStrictTypeConstraints(true);
samplesCommon::enableDLA(builder.get(), mParams.dlaCore);
mEngine = std::shared_ptr<nvinfer1::ICudaEngine>(builder->buildCudaEngine(*network), samplesCommon::InferDeleter());
//创建引擎
if (!mEngine)
return false;
assert(network->getNbInputs() == 1);
mInputDims = network->getInput(0)->getDimensions();//网络输入的大小
assert(mInputDims.nbDims == 3);
return true;
}
//!
//! \brief Reads the input and mean data, preprocesses, and stores the result in a managed buffer
//! //读取输入图片,预处理,然后存储到buffer里
bool SampleMNIST::processInput(const samplesCommon::BufferManager& buffers, const std::string& inputTensorName, int inputFileIdx) const
{
const int inputH = mInputDims.d[1];
const int inputW = mInputDims.d[2];
// Read a random digit file
srand(unsigned(time(nullptr)));
std::vector<uint8_t> fileData(inputH * inputW);
readPGMFile(locateFile(std::to_string(inputFileIdx) + ".pgm", mParams.dataDirs), fileData.data(), inputH, inputW);//读取随机选择的那张图片
// Print ASCII representation of digit
gLogInfo << "Input:\n";
for (int i = 0; i < inputH * inputW; i++)
gLogInfo << (" .:-=+*#%@"[fileData[i] / 26]) << (((i + 1) % inputW) ? "" : "\n");
gLogInfo << std::endl;
float* hostInputBuffer = static_cast<float*>(buffers.getHostBuffer(inputTensorName));
for (int i = 0; i < inputH * inputW; i++)
hostInputBuffer[i] = float(fileData[i]);//填充数据到缓存
return true;
}
//!
//! \brief Verifies that the output is correct and prints it
//!//检车输出是否正确并打印
bool SampleMNIST::verifyOutput(const samplesCommon::BufferManager& buffers, const std::string& outputTensorName, int groundTruthDigit) const
{
const float* prob = static_cast<const float*>(buffers.getHostBuffer(outputTensorName));
// Print histogram of the output distribution
gLogInfo << "Output:\n";
float val{0.0f};
int idx{0};
for (unsigned int i = 0; i < 10; i++)
{
val = std::max(val, prob[i]);
if (val == prob[i])
idx = i;
gLogInfo << i << ": " << std::string(int(std::floor(prob[i] * 10 + 0.5f)), '*') << "\n";
}
gLogInfo << std::endl;
return (idx == groundTruthDigit && val > 0.9f);
}
//!
//! \brief This function uses a caffe parser to create the MNIST Network and marks the
//! output layers
//!
//! \param network Pointer to the network that will be populated with the MNIST network
//!
//! \param builder Pointer to the engine builder
//!//用caffe parser解析模型文件和配置文件等去创建MNIST Network。
void SampleMNIST::constructNetwork(SampleUniquePtr<nvinfer1::IBuilder>& builder, SampleUniquePtr<nvinfer1::INetworkDefinition>& network, SampleUniquePtr<nvcaffeparser1::ICaffeParser>& parser)
{
const nvcaffeparser1::IBlobNameToTensor* blobNameToTensor = parser->parse(
locateFile(mParams.prototxtFileName, mParams.dataDirs).c_str(),
locateFile(mParams.weightsFileName, mParams.dataDirs).c_str(),
*network,
nvinfer1::DataType::kFLOAT);
for (auto& s : mParams.outputTensorNames)
{
network->markOutput(*blobNameToTensor->find(s.c_str()));//标记输出层
}
// add mean subtraction to the beginning of the network
Dims inputDims = network->getInput(0)->getDimensions();
mMeanBlob = SampleUniquePtr<nvcaffeparser1::IBinaryProtoBlob>(parser->parseBinaryProto(locateFile(mParams.meanFileName, mParams.dataDirs).c_str()));
Weights meanWeights{DataType::kFLOAT, mMeanBlob->getData(), inputDims.d[1] * inputDims.d[2]};
// For this sample, a large range based on the mean data is chosen and applied to the entire network.
// The preferred method is use scales computed based on a representative data set
// and apply each one individually based on the tensor. The range here is large enough for the
// network, but is chosen for example purposes only.
float maxMean = samplesCommon::getMaxValue(static_cast<const float*>(meanWeights.values), samplesCommon::volume(inputDims));
auto mean = network->addConstant(Dims3(1, inputDims.d[1], inputDims.d[2]), meanWeights);
auto meanSub = network->addElementWise(*network->getInput(0), *mean->getOutput(0), ElementWiseOperation::kSUB);
network->getLayer(0)->setInput(0, *meanSub->getOutput(0));
samplesCommon::setAllTensorScales(network.get(), maxMean, maxMean);
}
//!
//! \brief This function runs the TensorRT inference engine for this sample
//!
//! \details This function is the main execution function of the sample. It allocates
//! the buffer, sets inputs, executes the engine, and verifies the output.
//!
bool SampleMNIST::infer()//推理的代码
{
// Create RAII buffer manager object
samplesCommon::BufferManager buffers(mEngine, mParams.batchSize);//首先创建buffer
auto context = SampleUniquePtr<nvinfer1::IExecutionContext>(mEngine->createExecutionContext());
if (!context)
{
return false;
}
// Pick a random digit to try to infer
srand(time(NULL));
const int digit = rand() % 10;//随机选取一个数字
// Read the input data into the managed buffers
// There should be just 1 input tensor
assert(mParams.inputTensorNames.size() == 1);
if (!processInput(buffers, mParams.inputTensorNames[0], digit))//读取输入数据
return false;
// Create CUDA stream for the execution of this inference.
cudaStream_t stream;
CHECK(cudaStreamCreate(&stream));
// Asynchronously copy data from host input buffers to device input buffers
buffers.copyInputToDeviceAsync(stream);//异步把数据从cpu拷贝到GPU
// Asynchronously enqueue the inference work
if (!context->enqueue(mParams.batchSize, buffers.getDeviceBindings().data(), stream, nullptr))
return false;//异步执行推理工作
// Asynchronously copy data from device output buffers to host output buffers
buffers.copyOutputToHostAsync(stream);//异步拷贝数据从GPU到CPU
// Wait for the work in the stream to complete
cudaStreamSynchronize(stream);//等待流处理工作完成
// Release stream
cudaStreamDestroy(stream);//释放stream
// Check and print the output of the inference
// There should be just one output tensor
assert(mParams.outputTensorNames.size() == 1);
bool outputCorrect = verifyOutput(buffers, mParams.outputTensorNames[0], digit);//检查结果
return outputCorrect;
}
//!
//! \brief This function can be used to clean up any state created in the sample class
//!
bool SampleMNIST::teardown()
{
//! Clean up the libprotobuf files as the parsing is complete
//! \note It is not safe to use any other part of the protocol buffers library after
//! ShutdownProtobufLibrary() has been called.
nvcaffeparser1::shutdownProtobufLibrary();
return true;
}
//!
//! \brief This function initializes members of the params struct using the command line args
//!//接收命令行的参数去初始化params的成员参数
MNISTSampleParams initializeSampleParams(const samplesCommon::Args& args)
{
MNISTSampleParams params;
if (args.dataDirs.size() != 0) //!< Use the data directory provided by the user
params.dataDirs = args.dataDirs;
else //!< Use default directories if user hasn't provided directory paths
{
params.dataDirs.push_back("data/mnist/");
params.dataDirs.push_back("data/samples/mnist/");
}
params.prototxtFileName = "mnist.prototxt";
params.weightsFileName = "mnist.caffemodel";
params.meanFileName = "mnist_mean.binaryproto";
params.inputTensorNames.push_back("data");//data填充到inputTensorNames
params.batchSize = 1;
params.outputTensorNames.push_back("prob");//prob填充到outputTensorNames
params.dlaCore = args.useDLACore;
params.int8 = args.runInInt8;
params.fp16 = args.runInFp16;
return params;
}
//!
//! \brief This function prints the help information for running this sample
//!
void printHelpInfo()
{
std::cout << "Usage: ./sample_mnist [-h or --help] [-d or --datadir=] [--useDLACore=]\n" ;
std::cout << "--help Display help information\n";
std::cout << "--datadir Specify path to a data directory, overriding the default. This option can be used multiple times to add multiple directories. If no data directories are given, the default is to use (data/samples/mnist/, data/mnist/)" << std::endl;
std::cout << "--useDLACore=N Specify a DLA engine for layers that support DLA. Value can range from 0 to n-1, where n is the number of DLA engines on the platform." << std::endl;
std::cout << "--int8 Run in Int8 mode.\n";
std::cout << "--fp16 Run in FP16 mode.\n";
}