物体绕任意向量的旋转——四元数法、旋转矩阵法、欧拉角法的比较

3D空间中的旋转可用旋转矩阵、欧拉角或四元数等形式来表示,他们不过都是数学工具,其中在绕任意向量的旋转方面,旋转矩阵和四元数两种工具用的较多,欧拉角由于存在万向节死锁等问题,使用存在限制。

(本文假设坐标系为左手坐标系中,旋转方向为顺时针。)

所求问题:

给定任意单位轴q(q1,q2,q3)(向量),求向量p(x,y,z)(或点p)饶q旋转theta角度的变换后的新向量p'(或点p'):

1.用四元数工具:
-------------------------------------------------------------------------
结论:构造四元数变换p'= q*p*q-1,(p,q是由向量p,q扩展成的四元数)。那么,p'转换至对应的向量(或点)就是变换后的新向量p'(或点p')。

其中,p',q,p,q-1均为四元数。q由向量q扩展,为q=(cos(theta/2),sin(theta/2)*q),p由向量p扩展,为p=(0,x,y,z),q-1为q的逆,因为q为单位四元数,所以q-1=q*=(cos(theta/2),-sin(theta/2)*q)。
-------------------------------------------------------------------------

(这个结论的证明过程可以在网上找到。这里略去。)
下面看其时间复杂度:

首先有个三角函数的计算时间,这个可以预先计算好,花费时间不计。考虑n个四元数相乘需进行4*4*(n-1)=16*(n-1)次乘法,15*(n-1)次加法,因为加法化费时间较少,这里仅考虑乘法。这里涉及到三个四元数的乘法,设一次乘法的时间为T,故花费16*2=32T

2.旋转矩阵工具:
-------------------------------------------------------------------------
结论:构造旋转矩阵变换Trot,则变换后的新向量p'(或点p')为p'= p*Trot

其中,p'(x',y',z',1),p(x,y,z,1)为向量p',p的4D齐次坐标表示,Trot =

|t*q1*q1 + c,           t*q1*q2 + s*q3,        t*q1*q3 - s*q2,        0|
|t*xq1*q2 - s*q3,     t*q2*q2 + c,              t*q2*q3 + s*q1,       0|
|t*q1*q3 + s*q2,       t*q2*q3 - s*q1,        t*q3*q3 + c,            0|
|0,                              0,                              0,                                1|

c=cos(theta), s=sin(theta),t=1-c.
-------------------------------------------------------------------------
(这个结论的证明过程可以在网上找到。这里略去。)

下面看其时间复杂度:

三角函数的计算时间不计。矩阵本身的元素乘法主要是计算t*x和s*x之类,需进行12+3=15次乘法。两个矩阵相乘的需进行n*n*n次乘法,这里n=4,所以花费4*4*4=64次乘法时间,但这里有个注意的地方就是旋转矩阵的第4维无须考虑,即可简化为3X3的矩阵。故花费3*3*3=27次乘法时间,总共的时间为15+27=42次乘法时间。cost=42T.

比较来看,还是使用四元数的效率要高出一些,这在要变换的点的数目越大时,体现的越明显。实际上,有很多3D引擎为了利用四元数运算的高效率性,一般先将矩阵转换成四元数后进行运算再转回为矩阵后,再传给DirectX或OpenGL库函数。

问题:
3D空间中,在等长度的两个交角为theta的向量v1(x1,y1,z1),v2(x2,y2,z2)之间进行球面线性插值。

实例:
做一个行星在围绕太阳等速旋转的动画,假设只采样到旋转过程中的两个位置p1,p2,现在想要用软件模拟行星是怎么从p1运动到p2的。

思路:
1。一般线性插值:

我们知道一般两个量之间进行线性插值的方法为:
v(t) = v1 + t*(v2-v1)(0<=t<=1)(因为t是一次方的,所以是线性的。)

物体绕任意向量的旋转——四元数法、旋转矩阵法、欧拉角法的比较_第1张图片

如上图所示。这里,考虑v,v1,v2是向量,由几何学的知识,v2-v1即为v1,v2组成的三角形的另外一条边。因为|v1| = |v2|,所以v1 + t*(v2-v1)的长度肯定小于|v1|或|v2|,当0

***********************************************
一般线性插值由于长度发生变化,不能满足案列的要求,我们需要保持向量长度不变的插值,即球面线性插值。
***********************************************

2。一般球面线性插值:

物体绕任意向量的旋转——四元数法、旋转矩阵法、欧拉角法的比较_第2张图片
如上图所示,将一般线性插值得到的结果乘以放大系数k(t),使其长度放大到|v1|或|v2|,即得保持向量长度不变的插值:
v(t) = k(t)*(v1 + t*(v2-v1))

其中k(t) = |v1|/|v(t)|=|v1|/|v1+t*(v2-v1)|.

这样,插值向量v(t)的端点就会沿着v1,v2端点构成的圆弧行进。因为v1,v2是等长的,这个圆弧实际上是位于v1,v2构成的球面上的一段,所以又叫球面线性插值,

*****************************************************************
这个插值解决了3D空间中旋转的插值,在关键帧动画中可以用来计算两个关键帧之间的动画。但是,由于它的插值不是等角速度的,而是变速的。所以如果用来实现案例中的效果的话还需进一步处理。
*****************************************************************

***************************************
注:一般球面线性插值v(t)与v1的夹角theta(t)不是t的线性函数。

证明:由向量点积可得cos(theta(t)) = (v(t)*v1)/|v(t)|*|v1|,
theta(t) = arcos((v(t)*v1)/|v1|^2),由反证法,假设theat(t)为线性函数,则 theat(t) = k*t + b,又theta(0) = 0,故 b = 0,theat(t) = k*t,将t'= 2t代入得,theta(2*t) = arcos((v(2*t)*v1)/|v1|^2)并不等于 2*theta(t),所以theat(t)不可能是t的线性函数。
***************************************

3。改进的球面线性插值:

要想进行等速的球面线性插值,有几个方法:

1)。用四元数工具:

变换方法:
---------------------------------------------
构造单位四元数q(cos(theta),sin(theta)*v1'),r(cos(theta),sin(theta)*v2')(v1'和v2'为单位v1,v2向量),以

及参数t(0<=t<=1),则构造四元数变换:

a.四元数 s(w,v') = r*(q-1)exp(t)*q
即为球面线性插值变换。其中,s的虚部v'即为v1'和v2'间的插值向量,乘以长度sqrt(x1^2+y1^2+z1^2)即得v1,v2间插值向量v。

b.另一种变形形式是对四元数进行插值变换:
s(w,v') = a*q + b*r

其中a = sin(alpha*(1-t))/sin(alpha),b = sin(alpha*t))/sin(alpha), cos(alpha) = x1*y1+y1*y2+z1*z2+w1*w2.
s的虚部v'即为v1'和v2'间的插值向量,乘以长度sqrt(x1^2+y1^2+z1^2)即得v1,v2间插值向量v。

两种变换都可以。
----------------------------------------------

复杂度:

以b方法为例:时间主要花在三角函数上,四元数乘以实数只需4次乘法。cost = 1*Tat + 3*Tt + 2Td + 3*4Tm


2)。利用旋转矩阵:

变换方法:
--------------------------------------------
v = v1*Trot

其中,Trot即饶任意轴旋转的矩阵变换矩阵。因为v1到v2间的插值可以看成是v1饶垂直于v1,v2组成的平面的向量的旋转,所以实际上就是个饶轴旋转的问题,不过相应参数变成:theta = t*theta,轴q(q1,q2,q3)变成向量v1Xv2/|v1Xv2| = (y1*z2-z1*y2,z1*x2-x1*z2,x1*y2-y1*x2)/sin(theta)
--------------------------------------------

复杂度:

基本和饶任意轴旋转矩阵的复杂度一样。主要是多了个向量叉积操作。 cost =2*Tt + 6*Tm + 42*Tm = 2*Tt +48*Tm

你可能感兴趣的:(线性代数,图形学原理与概念,Direct3D/OpenGL)