拟合曲线

最佳拟合直线

Time Limit: 1000ms   Memory limit: 65536K  有疑问?点这里^_^

题目描述

在很多情况下,天文观测得到的数据是一组包含很大数量的序列点图象,每一点用x值和y值定义。这就可能需要画一条通过这些点的最佳拟合曲线。

为了避免只对个别数据分析,需要进行最佳曲线拟合。考虑N个数据点,它们的坐标是(X1,Y1)(X2,Y2)...(XN,YN)。假设这些值中的X是严格的精确值,Y的值是测量值(含有一些误差)
         

对于一个给定的X,如X1,对应的值Y1与曲线C上对应的Y值将存在一个差值。我们用D1表示这个差值,有时我们也称这个差值为偏差、误差或残差,它可能是正、负或零。类似的,X2...,XN,对应的差值为D2,....,DN

 我们用D1+ D2+ ... + DN2 作为衡量曲线C拟合的“最佳”程度,这个值越小越好,越大则越不好。因此,我们做以下定义:任何一种类型的曲线,它们都有一个共同的特性,当ΣDi2最小时,称为最佳拟合曲线。注:∑指“取和”计算。 一条曲线具有这一特性时,称之为“最小二乘拟合”,这样的曲线称为“最小二乘曲线”。

本次的计算任务是拟合为一条直线,数学上称之为“线性回归”。“回归”一词看起来有点陌生,因为计算最佳曲线没什么好“回归”的,最好的术语就是“曲线似合”,在直线情况下就是“线性曲线拟合”。

你的任务是编写程序用最小二乘法计算出以下线性方程的系数(斜率a以及y轴的截距b):

 y = a*x + b   (4.1)

 a和b可以使用以下公式计算:
 
式中N是数据点的个数。注意,以上两式具有相同的分母,∑指逐项加法计算(取和)。∑x指对所有的x值求和,∑y指对所以的y值求和,∑(x^2)指对所有x的平方求和。∑xy指对所有的积xy进行取和计算。应注意,∑xy 与 ∑x*∑y是不相同的(“积的和”与“和的积”是不同的),同样(∑x)^2与∑(x^2)也是不相同的(“和的平方”与“平方的和”是不相同的)。


输入

  n 组整数表示 x i y i   ,期中|x|<=10 6 ,|y|<=106, n < 15

输出

  最佳拟合曲线参数 a b a b 各占一行, b 精确到小数点后 3 位。

示例输入

4
1  6
2  5
3  7
4  10

示例输出

1.400
3.500

提示

 

来源

#include
#include
int n;
double qiu(double *x)
{
	double s=0;
	for(int i=0;i


你可能感兴趣的:(拟合曲线)