- 计算机视觉(八):CNN架构
GeniusAng丶
深度学习计算机视觉深度学习计算机视觉神经网络卷积神经网络python
计算机视觉笔记总目录下面我们主要以一些常见的网络结构去解析,并介绍大部分的网络的特点。这里看一下卷积的发展历史图。1LeNet-5解析首先我们从一个稍微早一些的卷积网络结构LeNet-5,开始的目的是用来识别数字的。从前往后介绍完整的结构组成,并计算相关输入和输出。1.1网络结构激活层默认不画网络图当中,这个网络结构当时使用的是sigmoid和Tanh函数,还没有出现Relu函数将卷积、激活、池化
- 计算机视觉笔记及资料整理
fengf96
计算机视觉笔记及资料整理(含图像分割、目标检测)--这是一个巨佬写的学习资料大全,内容真的很全本文由博客一文多发平台OpenWrite发布!
- GitHub上的计算机视觉学习资料推荐
fengf96
9月份将要读研,导师是做cv的,最近学习时找到了不少的计算机视觉的资料,记录一下,同时也分享给需要的朋友assmdx/ComputerVisionDocAceCoooool/interview-computer-vision(计算机视觉笔记和总结,这个作者整理的比较详细)WangPerryWPY/Computer-Version(中山大学的计算机视觉课程代码)pascal1129/cv_notes
- 计算机视觉笔记本推荐_视觉灵感:Mishti笔记本
weixin_26732881
计算机视觉人工智能
计算机视觉笔记本推荐TheMishtiNotebookisaprojectclosetomyheart,whereinIexperimentedwithscreenprintingtechniquesatthePrintLabsattheNationalInstituteofDesign,Ahmedabad.Datingbacktotheyear2012whentheNIDPrintLabswas
- 大数据分析和计算机视觉笔记 (8) - 卷积神经网络图像分析(Convolution Neural Network Image Analytic)
王踹踹
cv笔记大数据计算机视觉神经网络机器学习深度学习卷积神经网络
深度学习-卷积神经网络图片分析步骤视觉词袋法流程(Bag-of-Visual-Word)深度学习(DeepLearning)神经网络知识背景其他名词损失函数(lossfunction)激活函数多层感知全连接层(FullyConnectedLayer)挑战网络结构设计学习算法为什么选择卷积神经网络?深度学习模型(DeepLearningModel)卷积神经网络卷积层(ConvolutionLayer
- 李飞飞计算机视觉笔记(4)--神经网络训练细节part1
linjiet
机器学习计算机视觉计算机视觉课程笔记李飞飞计算机视觉神经网络训练细节
这里说明一下,因为这个视频是2016年的,可能现在有些东西已经变化。我们将用到以下和方差相关的定理:假设有随机变量x和w,它们都服从均值为0,方差为σ的分布,且独立同分布,那么:•w*x就会服从均值为0,方差为σ*σ的分布•w*x+w*x就会服从均值为0,方差为2*σ*σ的分布是否我们应该需要大量的数据集对模型进行训练?这种认识是错误的,我们一般很少直接对卷积神经网络进行训练,通常会先在大数据集如
- 计算机视觉笔记11.26
几乎几乎
计算机视觉opencv人工智能
边界填充概念:基于原尺寸对图像边界进行填充使用cv2.copyMakeBorder(img,top_size,bottom_size,left_size,right_size,type)函数type是图像填充的形式,BORDER_REPLICATE复制法,即直接复制最边缘的像素BORDER_REFLECT反射法,例:cba||abcd||dcb镜面BORDER_REFLECT_101反射法,例:f
- 计算机视觉(十四):Tensorflow分布式训练
GeniusAng丶
深度学习计算机视觉计算机视觉人工智能神经网络tensorflow分布式训练
计算机视觉笔记总目录当我们拥有大量计算资源时,通过使用合适的分布式策略,我们可以充分利用这些计算资源,从而大幅压缩模型训练的时间。针对不同的使用场景,TensorFlow在tf.distribute.Strategy中为我们提供了若干种分布式策略,使得我们能够更高效地训练模型。1TensorFlow分布式的分类图间并行(又称数据并行)每个机器上都会有一个完整的模型,将数据分散到各个机器,分别计算梯
- 计算机视觉(九):TensorFlow快速入门模型
GeniusAng丶
深度学习计算机视觉tensorflow计算机视觉人工智能python深度学习
计算机视觉笔记总目录1模型构建-Model与Layer在TensorFlow中,推荐使用Keras(tf.keras)构建模型。Keras是一个广为流行的高级神经网络API,简单、快速而不失灵活性,现已得到TensorFlow的官方内置和全面支持。Keras有两个重要的概念:模型(Model)和层(Layer)。层将各种计算流程和变量进行了封装(例如基本的全连接层,CNN的卷积层、池化层等)Ker
- 计算机视觉(十三):Tensorflow执行模式
GeniusAng丶
深度学习计算机视觉计算机视觉人工智能tensorflowkeras深度学习
计算机视觉笔记总目录1EagerExecution与GraphExecution1.1GraphExecution(图模式)特点:预先定义计算图,运行时反复使用,不能改变速度更快,适合大规模部署,适合嵌入式平台TensorFlow的图执行模式是一个符号式的(基于计算图的)计算框架。简而言之,如果你需要进行一系列计算,则需要依次进行如下两步:1、建立一个“计算图”,这个图描述了如何将输入数据通过一系
- 计算机视觉笔记2
qq_38038123
计算机视觉神经网络深度学习机器学习
梯度消亡*解释:神经网络靠输入段的网络层的系数逐渐不再随着训练而变化,或者变化非常缓慢,随着网络层数的增加,这个现象越发明显。梯度消亡前提使用梯度的训练方法(例如梯度下降)使用的激活函数具有输出值范围大大小于输入值的范围,例如logistic函数,tanh函数梯度消亡解决方案激活函数ReLu:f(x)=max(0,x),输入大于0梯度为1,否这为0激活函数LeakyReLu:f(x)=max(ax
- 计算机视觉(四):浅层/深层神经网络
GeniusAng丶
深度学习计算机视觉神经网络深度学习计算机视觉反向传播python
计算机视觉笔记总目录1神经网络的表达能力理解具有全连接层的神经网络的一个方式是:可以认为它们定义了一个由一系列函数组成的函数族,网络的权重就是每个函数的参数。如此产生的问题是:该函数族的表达能力如何?存在不能被神经网络表达的函数吗?现在看来,拥有至少一个隐层的神经网络是一个通用的近似器。在研究(例如1989年的论文ApproximationbySuperpositionsofSigmoidalFu
- 李飞飞计算机视觉笔记(2)--线性分类器损失函数与最优化
linjiet
计算机视觉机器学习计算机视觉课程笔记李飞飞斯坦福计算机视觉损失函数最优化
文章中的词语解释:分类器:完整的神经网络类别分类器:分类器中的某一个输出对应的所有权值(单层全连接神经网络)损失函数:不包括正则式的损失函数正则化损失函数:包括正则式的损失函数多类SVM损失(MulticlassSVMloss)这里偷个懒,SVM损失对应的公式如下图(图片来自李飞飞计算机视觉课件):公式中的下标jjj表示不正确类别,yiy_{i}yi表示正确类别,sss对应是得分向量,而sjs_{
- 网站
想啥诺
日常
第一篇特征提取以及openvslam中的相关实现详解SLAM入门之视觉里程计(5):单应矩阵一行命令解决Ubuntu不能挂载移动硬盘问题Errormounting/dev/sda1at/media/XXXX:Command-line`mount-t“ntfs”-oJupyterNotebook快速入门tensorflow计算机视觉笔记及资料整理(含图像分割、目标检测小方向学习)Bing搜索CVPR
- (计算机视觉笔记)1、初入计算机视觉
Zensaan
计算机视觉人工智能
计算机视觉笔记1、初入计算机视觉文章目录一、人工智能1、什么是人工智能2、人工智能三大核心要素3、算法概念4、机器学习5、深度学习6、神经网络二、计算机视觉1、什么是计算机视觉2、研究方向3、专业工具4、应用领域三、总结一、人工智能1、什么是人工智能被广泛接受的说法:人工智能是通过机器来模拟人类认知能力的技术。人工智能最核心的能力就是根据给定的输入做出判断或预测。该领域的研究包括机器人、图像识别、
- 计算机视觉(七):卷积神经网络(CNN)
GeniusAng
深度学习计算机视觉神经网络cnn深度学习python计算机视觉
计算机视觉笔记总目录1为什么需要卷积神经网络在计算机视觉领域,通常要做的就是指用机器程序替代人眼对目标图像进行识别等。那么神经网络也好还是卷积神经网络其实都是上个世纪就有的算法,只是近些年来电脑的计算能力已非当年的那种计算水平,同时现在的训练数据很多,于是神经网络的相关算法又重新流行起来,因此卷积神经网络也一样流行。1974年,PaulWerbos提出了误差反向传导来训练人工神经网络,使得训练多层
- 李飞飞计算机视觉笔记(3)--反向传播与神经网络初步
linjiet
机器学习计算机视觉计算机视觉课程笔记机器学习计算机视觉反向传播神经网络李飞飞
当前梯度值:上一层传入当前层的梯度值两层神经网络:除开输入层总共为2层的神经网络单层隐藏层的神经网络:与两层神经网络结构一致,我们描述神经网络的层数是通过有多少层的权值来定的,所以输入层不计入层数里面。梯度计算前一篇文章说了梯度计算有两种方法,一种数值方法,直接简单但速度慢,第二种就是解析方法,通过微积分进行计算,计算速度快,但有时候的结果是错误的,所以一般会进行梯度检查的操作。我们一般使用的是解
- 计算机视觉(五):深度学习优化算法
ComAng
深度学习计算机视觉深度学习优化算法机器学习梯度下降python
计算机视觉笔记总目录1优化算法优化的目标在于降低训练损失,只关注最小化目标函数上的表现]深度学习问题中,我们通常会预先定义一个损失函数。有了损失函数以后,我们就可以使用优化算法试图将其最小化。在优化中,这样的损失函数通常被称作优化问题的目标函数(objectivefunction)。依据惯例,优化算法通常只考虑最小化目标函数。1.1优化遇到的挑战局部最优梯度消失1.2局部最优定义:对于目标函数f(
- 计算机视觉(十二):Tensorflow常用功能模块
GeniusAng
计算机视觉深度学习计算机视觉深度学习人工智能tensorflowpython
计算机视觉笔记总目录1fit的callbacks详解回调是在训练过程的给定阶段应用的一组函数。可以使用回调来获取培训期间内部状态和模型统计信息的视图。您可以将回调列表(作为关键字参数callbacks)传递给或类的fit()方法。然后将在训练的每个阶段调用回调的相关方法。定制化保存模型保存events文件1.1ModelCheckpointfromtensorflow.python.keras.c
- 计算机视觉(六):深度学习正则化
GeniusAng
深度学习计算机视觉深度学习计算机视觉正则化pythondropout
计算机视觉笔记总目录1偏差与方差1.1数据集划分首先我们对机器学习当中涉及到的数据集划分进行一个简单的复习训练集(trainset):用训练集对算法或模型进行训练过程;验证集(developmentset):利用验证集(又称为简单交叉验证集,hold-outcrossvalidationset)进行交叉验证,选择出最好的模型;测试集(testset):最后利用测试集对模型进行测试,对学习方法进行评
- 计算机视觉(二):图像分类-分类器及损失
GeniusAng
深度学习计算机视觉深度学习python图像分类图像识别计算机视觉
计算机视觉笔记总目录1.CIFAR-10例子介绍图像分类数据集示例:CIFAR-10,一个流行的图像分类数据集。这个数据集由60000个32像素高和宽组成的小图像组成。每个图像都被标记为10个类之一(例如“飞机、汽车、鸟等”)。这60000个图像被分割成50000个图像的训练集和10000个图像的测试集。在下图中,您可以看到10个类中每个类的10个随机示例图像:上面图中就是数据集的类别和图像的示例
- 计算机视觉(一):神经网络简介
GeniusAng
计算机视觉深度学习计算机视觉神经网络深度学习感知机
计算机视觉笔记总目录1.什么是神经网络人工神经网络(ArtificialNeuralNetwork,简写为ANN)也简称为神经网络(NN)。是一种模仿生物神经网络(动物的中枢神经系统,特别是大脑)结构和功能的计算模型。经典的神经网络结构包含三个层次的神经网络。分别输入层,输出层以及隐藏层。其中每层的圆圈代表一个神经元,隐藏层和输出层的神经元有输入的数据计算后输出,输入层的神经元只是输入。神经网络的
- 计算机视觉笔记及资料整理(含图像分割、目标检测小方向学习)
wangzugenwy
计算机视觉
前言1、简单聊聊:在我脑海中我能通过这些年听到的技术名词来感受到技术的更新及趋势,这种技术发展有时候我觉得连关注的脚步都赶不上。简单回顾看看,从我能听到的技术名词来感受,最开始耳闻比较多「云计算」这玩意,后来听到比较多的是「数据挖掘」,当时想着等考上研也要选数据挖掘这个方向(遗憾最后没考上…),然而本科毕业之后听到的最多便是「人工智能」,整个技术圈似乎完全被这个词所覆盖,怎么突然火起来这个?我觉得
- 【笔记】计算机视觉笔记
江山点墨
计算机视觉及测距
计算机视觉是什么计算机视觉是一门研究如何使机器“看”的科学,更进一步的说,就是指用摄影机和计算机代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图像处理,用计算机处理成为更适合人眼观察或传送给仪器检测的图像(选自维基百科)计算机视觉的研究对象主要是映射到单幅或多幅图像上的三维场景,例如三维场景的重建。计算机视觉的研究很大程度上针对图像的内容。应用:人脸识别:Snapchat和Faceboo
- 计算机视觉笔记及资料整理(含图像分割、目标检测)
Jaybo_
人工智能[机器学习]机器学习机器学习深度学习计算机视觉CVCNN
前言1、简单聊聊:在我脑海中我能通过这些年听到的技术名词来感受到技术的更新及趋势,这种技术发展有时候我觉得连关注的脚步都赶不上。简单回顾看看,从我能听到的技术名词来感受,最开始耳闻比较多「云计算」这玩意,后来听到比较多的是「数据挖掘」,然而本科毕业之后听到的最多便是「人工智能」,整个技术圈似乎完全被这个词所覆盖,怎么突然火起来这个?我觉得用AlphaGo这个可以去作个反应吧,找了下新闻资料:201
- GitHub上的计算机视觉学习资料推荐
K.osth
9月份将要读研,导师是做cv的,最近学习时找到了不少的计算机视觉的资料,记录一下,同时也分享给需要的朋友assmdx/ComputerVisionDocAceCoooool/interview-computer-vision(计算机视觉笔记和总结,这个作者整理的比较详细)WangPerryWPY/Computer-Version(中山大学的计算机视觉课程代码)pascal1129/cv_notes
- 计算机视觉笔记(三)图像处理(2)霍夫变换、角点检测、图像匹配SIFT
thunderzo
计算机视觉笔记
Outline:1、GlobalImageFeatures(HoughTransform)霍夫变换2、角点检测3、SIFT特征4、Learningwithmanysimplefeatures一、霍夫变换1、简介霍夫变换(HoughTransform)是图像处理中的一种特征提取技术,它通过一种投票算法检测具有特定形状的物体。Givenasetofpoints,findthecurveoflineth
- 【计算机视觉笔记】图像检索学习 (Content Based Image Retrieval)
zqnnn
找工作的二三事儿
论文跟踪:Awesomeimageretrievalpapershttps://github.com/willard-yuan/awesome-cbir-papers综述:SIFTMeetsCNN:ADecadeSurveyofInstanceRetrievalgithubOverview:Guide-CBIRCBIR_LeaderBoardhttps://github.com/willard-y
- 计算机视觉笔记(一) 初探计算机视觉
thunderzo
计算机视觉笔记
Outline:1.CV背景介绍2.OpenCV基础3.图像的基本操作:遍历图像,ROI选取4.Python环境搭建5.机器学习在CV中的应用:KNN与Kmeans一、什么是ComputerVision(CV)计算机视觉的目的:通过写程序来解释图片。图像处理:输入图像,输出图像计算机视觉:输入图像,输出图像的理解。二、图像处理库图像处理库:OpenCVCxImage~=OpenCV1.0CImg显
- 斯坦福CS231n李飞飞计算机视觉笔记
带刺的小花_ea97
第一课:计算机视觉历史回顾与介绍(上)简单的介绍:关于课程,我们要解决的问题,我们要学习的工具神经网络/卷积神经网络(深度学习网络)我们实际上进入了一个视觉时代(像素),互联网作为信息载体和传感器的发展。对照片进行标签、分类、处理视频的每一帧依赖计算机视觉的发展。挑战:非常大量的数据,以及“暗物质”(无法手工处理)。本门课:模型方面:神经网络应用范围:视觉识别深入理解问题本质,思考问题的真正定义,
- 集合框架
天子之骄
java数据结构集合框架
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- Table Driven(表驱动)方法实例
bijian1013
javaenumTable Driven表驱动
实例一:
/**
* 驾驶人年龄段
* 保险行业,会对驾驶人的年龄做年龄段的区分判断
* 驾驶人年龄段:01-[18,25);02-[25,30);03-[30-35);04-[35,40);05-[40,45);06-[45,50);07-[50-55);08-[55,+∞)
*/
public class AgePeriodTest {
//if...el
- Jquery 总结
cuishikuan
javajqueryAjaxWebjquery方法
1.$.trim方法用于移除字符串头部和尾部多余的空格。如:$.trim(' Hello ') // Hello2.$.contains方法返回一个布尔值,表示某个DOM元素(第二个参数)是否为另一个DOM元素(第一个参数)的下级元素。如:$.contains(document.documentElement, document.body); 3.$
- 面向对象概念的提出
麦田的设计者
java面向对象面向过程
面向对象中,一切都是由对象展开的,组织代码,封装数据。
在台湾面向对象被翻译为了面向物件编程,这充分说明了,这种编程强调实体。
下面就结合编程语言的发展史,聊一聊面向过程和面向对象。
c语言由贝尔实
- linux网口绑定
被触发
linux
刚在一台IBM Xserver服务器上装了RedHat Linux Enterprise AS 4,为了提高网络的可靠性配置双网卡绑定。
一、环境描述
我的RedHat Linux Enterprise AS 4安装双口的Intel千兆网卡,通过ifconfig -a命令看到eth0和eth1两张网卡。
二、双网卡绑定步骤:
2.1 修改/etc/sysconfig/network
- XML基础语法
肆无忌惮_
xml
一、什么是XML?
XML全称是Extensible Markup Language,可扩展标记语言。很类似HTML。XML的目的是传输数据而非显示数据。XML的标签没有被预定义,你需要自行定义标签。XML被设计为具有自我描述性。是W3C的推荐标准。
二、为什么学习XML?
用来解决程序间数据传输的格式问题
做配置文件
充当小型数据库
三、XML与HTM
- 为网页添加自己喜欢的字体
知了ing
字体 秒表 css
@font-face {
font-family: miaobiao;//定义字体名字
font-style: normal;
font-weight: 400;
src: url('font/DS-DIGI-e.eot');//字体文件
}
使用:
<label style="font-size:18px;font-famil
- redis范围查询应用-查找IP所在城市
矮蛋蛋
redis
原文地址:
http://www.tuicool.com/articles/BrURbqV
需求
根据IP找到对应的城市
原来的解决方案
oracle表(ip_country):
查询IP对应的城市:
1.把a.b.c.d这样格式的IP转为一个数字,例如为把210.21.224.34转为3524648994
2. select city from ip_
- 输入两个整数, 计算百分比
alleni123
java
public static String getPercent(int x, int total){
double result=(x*1.0)/(total*1.0);
System.out.println(result);
DecimalFormat df1=new DecimalFormat("0.0000%");
- 百合——————>怎么学习计算机语言
百合不是茶
java 移动开发
对于一个从没有接触过计算机语言的人来说,一上来就学面向对象,就算是心里上面接受的了,灵魂我觉得也应该是跟不上的,学不好是很正常的现象,计算机语言老师讲的再多,你在课堂上面跟着老师听的再多,我觉得你应该还是学不会的,最主要的原因是你根本没有想过该怎么来学习计算机编程语言,记得大一的时候金山网络公司在湖大招聘我们学校一个才来大学几天的被金山网络录取,一个刚到大学的就能够去和
- linux下tomcat开机自启动
bijian1013
tomcat
方法一:
修改Tomcat/bin/startup.sh 为:
export JAVA_HOME=/home/java1.6.0_27
export CLASSPATH=$CLASSPATH:$JAVA_HOME/lib/tools.jar:$JAVA_HOME/lib/dt.jar:.
export PATH=$JAVA_HOME/bin:$PATH
export CATALINA_H
- spring aop实例
bijian1013
javaspringAOP
1.AdviceMethods.java
package com.bijian.study.spring.aop.schema;
public class AdviceMethods {
public void preGreeting() {
System.out.println("--how are you!--");
}
}
2.beans.x
- [Gson八]GsonBuilder序列化和反序列化选项enableComplexMapKeySerialization
bit1129
serialization
enableComplexMapKeySerialization配置项的含义
Gson在序列化Map时,默认情况下,是调用Key的toString方法得到它的JSON字符串的Key,对于简单类型和字符串类型,这没有问题,但是对于复杂数据对象,如果对象没有覆写toString方法,那么默认的toString方法将得到这个对象的Hash地址。
GsonBuilder用于
- 【Spark九十一】Spark Streaming整合Kafka一些值得关注的问题
bit1129
Stream
包括Spark Streaming在内的实时计算数据可靠性指的是三种级别:
1. At most once,数据最多只能接受一次,有可能接收不到
2. At least once, 数据至少接受一次,有可能重复接收
3. Exactly once 数据保证被处理并且只被处理一次,
具体的多读几遍http://spark.apache.org/docs/lates
- shell脚本批量检测端口是否被占用脚本
ronin47
#!/bin/bash
cat ports |while read line
do#nc -z -w 10 $line
nc -z -w 2 $line 58422>/dev/null2>&1if[ $?-eq 0]then
echo $line:ok
else
echo $line:fail
fi
done
这里的ports 既可以是文件
- java-2.设计包含min函数的栈
bylijinnan
java
具体思路参见:http://zhedahht.blog.163.com/blog/static/25411174200712895228171/
import java.util.ArrayList;
import java.util.List;
public class MinStack {
//maybe we can use origin array rathe
- Netty源码学习-ChannelHandler
bylijinnan
javanetty
一般来说,“有状态”的ChannelHandler不应该是“共享”的,“无状态”的ChannelHandler则可“共享”
例如ObjectEncoder是“共享”的, 但 ObjectDecoder 不是
因为每一次调用decode方法时,可能数据未接收完全(incomplete),
它与上一次decode时接收到的数据“累计”起来才有可能是完整的数据,是“有状态”的
p
- java生成随机数
cngolon
java
方法一:
/**
* 生成随机数
* @author
[email protected]
* @return
*/
public synchronized static String getChargeSequenceNum(String pre){
StringBuffer sequenceNum = new StringBuffer();
Date dateTime = new D
- POI读写海量数据
ctrain
海量数据
import java.io.FileOutputStream;
import java.io.OutputStream;
import org.apache.poi.xssf.streaming.SXSSFRow;
import org.apache.poi.xssf.streaming.SXSSFSheet;
import org.apache.poi.xssf.streaming
- mysql 日期格式化date_format详细使用
daizj
mysqldate_format日期格式转换日期格式化
日期转换函数的详细使用说明
DATE_FORMAT(date,format) Formats the date value according to the format string. The following specifiers may be used in the format string. The&n
- 一个程序员分享8年的开发经验
dcj3sjt126com
程序员
在中国有很多人都认为IT行为是吃青春饭的,如果过了30岁就很难有机会再发展下去!其实现实并不是这样子的,在下从事.NET及JAVA方面的开发的也有8年的时间了,在这里在下想凭借自己的亲身经历,与大家一起探讨一下。
明确入行的目的
很多人干IT这一行都冲着“收入高”这一点的,因为只要学会一点HTML, DIV+CSS,要做一个页面开发人员并不是一件难事,而且做一个页面开发人员更容
- android欢迎界面淡入淡出效果
dcj3sjt126com
android
很多Android应用一开始都会有一个欢迎界面,淡入淡出效果也是用得非常多的,下面来实现一下。
主要代码如下:
package com.myaibang.activity;
import android.app.Activity;import android.content.Intent;import android.os.Bundle;import android.os.CountDown
- linux 复习笔记之常见压缩命令
eksliang
tar解压linux系统常见压缩命令linux压缩命令tar压缩
转载请出自出处:http://eksliang.iteye.com/blog/2109693
linux中常见压缩文件的拓展名
*.gz gzip程序压缩的文件
*.bz2 bzip程序压缩的文件
*.tar tar程序打包的数据,没有经过压缩
*.tar.gz tar程序打包后,并经过gzip程序压缩
*.tar.bz2 tar程序打包后,并经过bzip程序压缩
*.zi
- Android 应用程序发送shell命令
gqdy365
android
项目中需要直接在APP中通过发送shell指令来控制lcd灯,其实按理说应该是方案公司在调好lcd灯驱动之后直接通过service送接口上来给APP,APP调用就可以控制了,这是正规流程,但我们项目的方案商用的mtk方案,方案公司又没人会改,只调好了驱动,让应用程序自己实现灯的控制,这不蛋疼嘛!!!!
发就发吧!
一、关于shell指令:
我们知道,shell指令是Linux里面带的
- java 无损读取文本文件
hw1287789687
读取文件无损读取读取文本文件charset
java 如何无损读取文本文件呢?
以下是有损的
@Deprecated
public static String getFullContent(File file, String charset) {
BufferedReader reader = null;
if (!file.exists()) {
System.out.println("getFull
- Firebase 相关文章索引
justjavac
firebase
Awesome Firebase
最近谷歌收购Firebase的新闻又将Firebase拉入了人们的视野,于是我做了这个 github 项目。
Firebase 是一个数据同步的云服务,不同于 Dropbox 的「文件」,Firebase 同步的是「数据」,服务对象是网站开发者,帮助他们开发具有「实时」(Real-Time)特性的应用。
开发者只需引用一个 API 库文件就可以使用标准 RE
- C++学习重点
lx.asymmetric
C++笔记
1.c++面向对象的三个特性:封装性,继承性以及多态性。
2.标识符的命名规则:由字母和下划线开头,同时由字母、数字或下划线组成;不能与系统关键字重名。
3.c++语言常量包括整型常量、浮点型常量、布尔常量、字符型常量和字符串性常量。
4.运算符按其功能开以分为六类:算术运算符、位运算符、关系运算符、逻辑运算符、赋值运算符和条件运算符。
&n
- java bean和xml相互转换
q821424508
javabeanxmlxml和bean转换java bean和xml转换
这几天在做微信公众号
做的过程中想找个java bean转xml的工具,找了几个用着不知道是配置不好还是怎么回事,都会有一些问题,
然后脑子一热谢了一个javabean和xml的转换的工具里,自己用着还行,虽然有一些约束吧 ,
还是贴出来记录一下
顺便你提一下下,这个转换工具支持属性为集合、数组和非基本属性的对象。
packag
- C 语言初级 位运算
1140566087
位运算c
第十章 位运算 1、位运算对象只能是整形或字符型数据,在VC6.0中int型数据占4个字节 2、位运算符: 运算符 作用 ~ 按位求反 << 左移 >> 右移 & 按位与 ^ 按位异或 | 按位或 他们的优先级从高到低; 3、位运算符的运算功能: a、按位取反: ~01001101 = 101
- 14点睛Spring4.1-脚本编程
wiselyman
spring4
14.1 Scripting脚本编程
脚本语言和java这类静态的语言的主要区别是:脚本语言无需编译,源码直接可运行;
如果我们经常需要修改的某些代码,每一次我们至少要进行编译,打包,重新部署的操作,步骤相当麻烦;
如果我们的应用不允许重启,这在现实的情况中也是很常见的;
在spring中使用脚本编程给上述的应用场景提供了解决方案,即动态加载bean;
spring支持脚本