- python卡方检验计算pvalue值_Python数据科学:卡方检验
CodeWhiz
之前已经介绍的变量分析:①相关分析:一个连续变量与一个连续变量间的关系。②双样本t检验:一个二分分类变量与一个连续变量间的关系。③方差分析:一个多分类分类变量与一个连续变量间的关系。本次介绍:卡方检验:一个二分分类变量或多分类分类变量与一个二分分类变量间的关系。如果其中一个变量的分布随着另一个变量的水平不同而发生变化时,那么两个分类变量就有关系。卡方检验并不能展现出两个分类变量相关性的强弱,只能展
- 27 个Python数据科学库实战案例 (附代码)
程序媛幂幂
python开发语言
为了大家能够对人工智能常用的Python库有一个初步的了解,以选择能够满足自己需求的库进行学习,对目前较为常见的人工智能库进行简要全面的介绍。**1、Numpy**NumPy(NumericalPython)是Python的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库,Numpy底层使用C语言编写,数组中直接存储对象,而不是存储对象指针,所以其运算效率远高于
- Python数据科学:Scikit-Learn机器学习
偶是不器
Pythonpython开发语言scikit-learn手写数字识别鸢尾花分类
4.1Scikit-Learn机器学习Scikit-Learn使用的数据表示:二维网格数据表实例1:通过Seaborn导入数据defskLearn():'''scikitLearn基本介绍:return:'''importseabornassns#导入Iris数据集#注:一般网络访问不了iris=sns.load_dataset('iris')iris.head()实例2:通过本地导入数据defs
- Python数据分析(Matplotlib、NumPy、Pandas)
侯静川
python数据分析matplotlibnumpypandas
Python数据分析(Numpy、Matplotlib、Pandas)教程:黑马程序员链接:https://www.bilibili.com/video/BV1hx411d7jb?p=1一、基础概念和环境1.1什么是数据分析数据分析是通过对收集到的数据进行解释、整理、转化和建模,以提取出有意义的信息、得出结论并支持决策的过程。1.2为什么要学习数据分析是Python数据科学的基础机器学习的基础1.
- python数据科学系列:pandas入门详细教程
小数志
数据分析python数据分析人工智能大数据编程语言
导读前2篇分别系统性介绍了numpy和matplotlib的入门基本知识,今天本文自然是要对pandas进行入门详细介绍,通过本文你将系统性了解pandas为何会有数据分析界"瑞士军刀"的盛誉。行文二级目录01关于pandaspandas,python+data+analysis的组合缩写,是python中基于numpy和matplotlib的第三方数据分析库,与后两者共同构成了python数据分
- 23个Python爬虫开源项目代码:微信、淘宝、豆瓣、知乎、微博...
互联网架构
python编程语言搜索引擎大数据java
来源:Python数据科学今天为大家整理了23个Python爬虫项目。整理的原因是,爬虫入门简单快速,也非常适合新入门的小伙伴培养信心,所有链接指向GitHub,微信不能直接打开,老规矩,可以用电脑打开。1.WechatSogou–微信公众号爬虫基于搜狗微信搜索的微信公众号爬虫接口,可以扩展成基于搜狗搜索的爬虫,返回结果是列表,每一项均是公众号具体信息字典。github地址:https://git
- 新书速览|Python数据科学应用从入门到精通
全栈开发圈
python算法
系统教授数据科学与Python实战,涵盖线性回归、逻辑回归、决策树、随机森林、神经网本书内容随着数据存储、数据处理等大数据技术的快速发展,数据科学在各行各业得到广泛的应用。数据清洗、特征工程、数据可视化、数据挖掘与建模等已成为高校师生和职场人士迎接数字化浪潮、与时俱进提升专业技能的必修课程。本书将“Python课程学习”与“数据科学应用”有机结合,为数字化人才的培养助力。全书共分13章,内容包括:
- 【转】评估分类模型的指标:ROC/AUC
悦光阴
分类数据挖掘python人工智能机器学习
原文:【机器学习笔记】:一文让你彻底理解准确率,精准率,召回率,真正率,假正率,ROC/AUC作者:xiaoyu微信公众号:Python数据科学知乎:python数据分析师ROC/AUC作为机器学习的评估指标非常重要,也是面试中经常出现的问题(80%都会问到)。其实,理解它并不是非常难,但是好多朋友都遇到了一个相同的问题,那就是:每次看书的时候都很明白,但回过头就忘了,经常容易将概念弄混。还有的朋
- D-Tale:一款实现Pandas GUI高效数据探索分析工具
Python数据挖掘
pythonpandaspython数据分析
想必很多人都用过Pandas来处理数据,作为Python数据科学领域的顶级库,Pandas确实有着强大的数据处理能力。特别是结合JupyterNotebook平台,简直可以称作编程里的Excel。喜欢本文记得收藏、关注、点赞。文末技术交流Pandas是代码工具,不能像Excel那样通过软件界面操作,有时候也给数据探索带来小小的困扰。比如说,你想简单看下数据集的结构、描述统计结果、可视化图表等等,如
- D-Tale,实现Pandas GUI高效数据分析
Python大数据分析@
scipynumpypandaspython
想必很多人都用过Pandas来处理数据,作为Python数据科学领域的顶级库,Pandas确实有着强大的数据处理能力。特别是结合JupyterNotebook平台,简直可以称作编程里的Excel。Pandas是代码工具,不能像Excel那样通过软件界面操作,有时候也给数据探索带来小小的困扰。比如说,你想简单探索下数据集的结构、描述统计结果、可视化图表等等,如果能绕开代码,直接通过GUI界面来操作,
- 数据科学 IPython 笔记本 8.9 自定义图例
布客飞龙
8.9自定义图例原文:CustomizingPlotLegends译者:飞龙协议:CCBY-NC-SA4.0本节是《Python数据科学手册》(PythonDataScienceHandbook)的摘录。绘图的图例将意义赋予可视化,为各种绘图元素标识意义。我们以前看过如何创建简单的图例;在这里,我们将介绍如何在Matplotlib中自定义图例的位置和样式。可以使用plt.legend()命令创建最
- Pandas实战100例-专栏介绍
惊鸿若梦一书生
Pandas实战100例pandas
Pandas,Python数据科学的心脏,是探索和分析数据世界的强大工具。想象一下,用几行代码就能洞察庞大数据集的秘密,无论是金融市场趋势还是社交媒体动态。通过Pandas,你可以轻松地整理、清洗、转换数据,将杂乱无章的数据变成有意义的洞察。它的灵活性和效率是数据科学家和分析师的必备利器。学习Pandas,就是开启数据探索之旅的第一步,让数据讲述背后的故事。你准备好了吗?加入Pandas的世界,成
- 精华整理几十个Python数据科学、机器学习、深度学习、神经网络、人工智能方面的核心库以及详细使用实战案例,轻松几行代码训练自己的专有人工智能模型
代码讲故事
机器人智慧之心机器学习深度学习人工智能神经网络卷积神经网络模型训练python
精华整理几十个Python数据科学、机器学习、深度学习、神经网络、人工智能方面的核心库以及详细使用实战案例,轻松几行代码训练自己的专有人工智能模型。机器学习人工智能的核心,是使计算机具有智能的根本途径。机器学习专注于算法,允许机器学习而不需要编程,并在暴露于新数据时进行更改,让计算机不依赖确定的编码指令,模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。
- Python数据科学应用从入门到精通--Python读取、合并SPSS数据文件
数据科学作家
python数据分析数据清洗特征工程数据可视化机器学习数据挖掘
在很多情况下,我们需要调用SPSS软件产生的数据,下面通过示例来进行讲解。首先需要将本书提供的数据文件存储在安装spyder-py3的默认路径位置(C:/Users/Administrator/.spyder-py3/,注意具体的安装路径可能与此不同),然后从相应位置进行读取,输入以下代码并逐行运行:pipinstall--upgradepyreadstat#读取SPSS数据需要安装pyreads
- 数据科学 IPython 笔记本 8.17 使用 Seaborn 的可视化
布客飞龙
8.17使用Seaborn的可视化原文:VisualizationwithSeaborn译者:飞龙协议:CCBY-NC-SA4.0本节是《Python数据科学手册》(PythonDataScienceHandbook)的摘录。Matplotlib据证明是一种非常有用和流行的可视化工具,但即使狂热的用户也会承认它经常会有很多不足之处。有几个对Matplotlib的有效的抱怨常常出现:在2.0版之前,
- Anaconda 完全指南:从安装到高级功能,一篇搞定
Rocky006
python开发语言
概要Anaconda是一个非常强大的Python数据科学平台,它集成了众多常用的数据科学工具和库,为数据分析、机器学习和科学计算提供了便捷的开发环境。本文将详细介绍Anaconda的安装、环境管理、常用工具和高级功能,帮助你快速掌握Anaconda的使用技巧。1.什么是Anaconda?Anaconda是一个开源的Python发行版,包含了Python解释器、众多常用的数据科学工具和库(如NumP
- Python数据科学视频讲解:特征归一化、特征标准化、样本归一化
数据科学作家
python开发语言数据挖掘人工智能机器学习数据分析特征工程
5.1特征归一化、特征标准化、样本归一化视频为《Python数据科学应用从入门到精通》张甜杨维忠清华大学出版社一书的随书赠送视频讲解5.1节内容。本书已正式出版上市,当当、京东、淘宝等平台热销中,搜索书名即可。内容涵盖数据科学应用的全流程,包括数据科学应用和Python的入门,数据清洗与特征工程,以及数据挖掘与建模、数据可视化等。针对数据分析或机器学习推荐两本入门级的图书:《Python机器学习原
- Python数据科学视频讲解:特征等宽分箱和等频分箱
数据科学作家
python开发语言数据挖掘数据分析人工智能特征工程数据清洗
5.2特征等宽分箱和等频分箱视频为《Python数据科学应用从入门到精通》张甜杨维忠清华大学出版社一书的随书赠送视频讲解5.2节内容。本书已正式出版上市,当当、京东、淘宝等平台热销中,搜索书名即可。内容涵盖数据科学应用的全流程,包括数据科学应用和Python的入门,数据清洗与特征工程,以及数据挖掘与建模、数据可视化等。针对数据分析或机器学习推荐两本入门级的图书:《Python机器学习原理与算法实现
- Python数据科学视频讲解:嵌入法(随机森林、提升法、Logistic等)
数据科学作家
python随机森林开发语言数据挖掘人工智能机器学习数据可视化
4.5嵌入法(随机森林、提升法、Logistic等)视频为《Python数据科学应用从入门到精通》张甜杨维忠清华大学出版社一书的随书赠送视频讲解4.5节内容。本书已正式出版上市,当当、京东、淘宝等平台热销中,搜索书名即可。内容涵盖数据科学应用的全流程,包括数据科学应用和Python的入门,数据清洗与特征工程,以及数据挖掘与建模、数据可视化等。针对数据分析或机器学习推荐两本入门级的图书:《Pytho
- Python数据科学视频讲解:特征决策树分箱
数据科学作家
python开发语言数据挖掘数据分析机器学习数据清洗特征工程
5.3特征决策树分箱视频为《Python数据科学应用从入门到精通》张甜杨维忠清华大学出版社一书的随书赠送视频讲解5.3节内容。本书已正式出版上市,当当、京东、淘宝等平台热销中,搜索书名即可。内容涵盖数据科学应用的全流程,包括数据科学应用和Python的入门,数据清洗与特征工程,以及数据挖掘与建模、数据可视化等。针对数据分析或机器学习推荐两本入门级的图书:《Python机器学习原理与算法实现》(杨维
- 【Python百宝箱】数据科学的黄金三角:数据挖掘和聚类
friklogff
python开发语言mapreducemongodb数据库
数据之舞:Python数据科学库横扫全场前言在当今数据驱动的时代,Python成为数据科学家和分析师的首选工具之一。本文将介绍一系列强大的Python库,涵盖了数据处理、可视化、机器学习和自然语言处理等领域。无论你是初学者还是经验丰富的数据科学从业者,这些工具都能助你在数据探索和建模中事半功倍。欢迎订阅专栏:Python库百宝箱:解锁编程的神奇世界文章目录数据之舞:Python数据科学库横扫全场前
- Python数据科学视频讲解:Python集合
数据科学作家
python开发语言数据挖掘数据分析人工智能数据可视化大数据
2.14Python集合视频为《Python数据科学应用从入门到精通》张甜杨维忠清华大学出版社一书的随书赠送视频讲解2.14节内容。本书已正式出版上市,当当、京东、淘宝等平台热销中,搜索书名即可。内容涵盖数据科学应用的全流程,包括数据科学应用和Python的入门,数据清洗与特征工程,以及数据挖掘与建模、数据可视化等。针对数据分析或机器学习推荐两本入门级的图书:《Python机器学习原理与算法实现》
- Python数据科学视频讲解:Python字符串
数据科学作家
python开发语言数据挖掘人工智能机器学习数据分析数据可视化
2.15Python字符串视频为《Python数据科学应用从入门到精通》张甜杨维忠清华大学出版社一书的随书赠送视频讲解2.15节内容。本书已正式出版上市,当当、京东、淘宝等平台热销中,搜索书名即可。内容涵盖数据科学应用的全流程,包括数据科学应用和Python的入门,数据清洗与特征工程,以及数据挖掘与建模、数据可视化等。针对数据分析或机器学习推荐两本入门级的图书:《Python机器学习原理与算法实现
- Python数据科学视频讲解:Python字典
数据科学作家
python开发语言数据挖掘数据分析人工智能数据可视化大数据
2.13Python字典视频为《Python数据科学应用从入门到精通》张甜杨维忠清华大学出版社一书的随书赠送视频讲解2.13节内容。本书已正式出版上市,当当、京东、淘宝等平台热销中,搜索书名即可。内容涵盖数据科学应用的全流程,包括数据科学应用和Python的入门,数据清洗与特征工程,以及数据挖掘与建模、数据可视化等。针对数据分析或机器学习推荐两本入门级的图书:《Python机器学习原理与算法实现》
- Python数据科学视频讲解:Python数据清洗基础
数据科学作家
python开发语言数据挖掘人工智能机器学习数据分析数据可视化
3.1Python数据清洗基础视频为《Python数据科学应用从入门到精通》张甜杨维忠清华大学出版社一书的随书赠送视频讲解3.1节内容。本书已正式出版上市,当当、京东、淘宝等平台热销中,搜索书名即可。内容涵盖数据科学应用的全流程,包括数据科学应用和Python的入门,数据清洗与特征工程,以及数据挖掘与建模、数据可视化等。针对数据分析或机器学习推荐两本入门级的图书:《Python机器学习原理与算法实
- 【Python】Python三大包:NumPy、Pandas和Matplotlib
奔向理想的星辰大海
Python技术研发项目管理pythonnumpypandas
Python三大包指的是NumPy、Pandas和Matplotlib,它们是在Python中常用的数据科学和数据分析工具包。NumPy是用于科学计算的基础包,Pandas是用于数据处理和分析的库,而Matplotlib则是用于生成图形的标准数据可视化库。以下将从几个方面对这三个包做详细的阐述。一、NumPyNumPy是Python数据科学和计算的基础包,它提供了高性能的多维数组对象以及对这些数组
- Python数据科学视频讲解:Python元组
数据科学作家
python开发语言数据挖掘人工智能机器学习数据分析数据可视化
2.12Python元组视频为《Python数据科学应用从入门到精通》张甜杨维忠清华大学出版社一书的随书赠送视频讲解2.12节内容。本书已正式出版上市,当当、京东、淘宝等平台热销中,搜索书名即可。内容涵盖数据科学应用的全流程,包括数据科学应用和Python的入门,数据清洗与特征工程,以及数据挖掘与建模、数据可视化等。针对数据分析或机器学习推荐两本入门级的图书:《Python机器学习原理与算法实现》
- Python数据科学视频讲解:基本输入函数 input()函数
数据科学作家
python开发语言数据挖掘人工智能机器学习深度学习数据分析
2.5基本输入函数:input()函数视频为《Python数据科学应用从入门到精通》张甜杨维忠清华大学出版社一书的随书赠送视频讲解2.5节内容。本书已正式出版上市,当当、京东、淘宝等平台热销中,搜索书名即可。内容涵盖数据科学应用的全流程,包括数据科学应用和Python的入门,数据清洗与特征工程,以及数据挖掘与建模、数据可视化等。针对数据分析或机器学习推荐两本入门级的图书:《Python机器学习原理
- Python数据科学视频讲解:Python序列的概念及通用操作
数据科学作家
python开发语言数据挖掘人工智能机器学习数据分析数据可视化
2.10Python序列的概念及通用操作视频为《Python数据科学应用从入门到精通》张甜杨维忠清华大学出版社一书的随书赠送视频讲解2.10节内容。本书已正式出版上市,当当、京东、淘宝等平台热销中,搜索书名即可。内容涵盖数据科学应用的全流程,包括数据科学应用和Python的入门,数据清洗与特征工程,以及数据挖掘与建模、数据可视化等。针对数据分析或机器学习推荐两本入门级的图书:《Python机器学习
- Python数据科学视频讲解:Python列表
数据科学作家
python开发语言数据挖掘人工智能机器学习数据分析大数据
2.11Python列表视频为《Python数据科学应用从入门到精通》张甜杨维忠清华大学出版社一书的随书赠送视频讲解2.11节内容。本书已正式出版上市,当当、京东、淘宝等平台热销中,搜索书名即可。内容涵盖数据科学应用的全流程,包括数据科学应用和Python的入门,数据清洗与特征工程,以及数据挖掘与建模、数据可视化等。针对数据分析或机器学习推荐两本入门级的图书:《Python机器学习原理与算法实现》
- java数字签名三种方式
知了ing
javajdk
以下3钟数字签名都是基于jdk7的
1,RSA
String password="test";
// 1.初始化密钥
KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("RSA");
keyPairGenerator.initialize(51
- Hibernate学习笔记
caoyong
Hibernate
1>、Hibernate是数据访问层框架,是一个ORM(Object Relation Mapping)框架,作者为:Gavin King
2>、搭建Hibernate的开发环境
a>、添加jar包:
aa>、hibernatte开发包中/lib/required/所
- 设计模式之装饰器模式Decorator(结构型)
漂泊一剑客
Decorator
1. 概述
若你从事过面向对象开发,实现给一个类或对象增加行为,使用继承机制,这是所有面向对象语言的一个基本特性。如果已经存在的一个类缺少某些方法,或者须要给方法添加更多的功能(魅力),你也许会仅仅继承这个类来产生一个新类—这建立在额外的代码上。
- 读取磁盘文件txt,并输入String
一炮送你回车库
String
public static void main(String[] args) throws IOException {
String fileContent = readFileContent("d:/aaa.txt");
System.out.println(fileContent);
- js三级联动下拉框
3213213333332132
三级联动
//三级联动
省/直辖市<select id="province"></select>
市/省直辖<select id="city"></select>
县/区 <select id="area"></select>
- erlang之parse_transform编译选项的应用
616050468
parse_transform游戏服务器属性同步abstract_code
最近使用erlang重构了游戏服务器的所有代码,之前看过C++/lua写的服务器引擎代码,引擎实现了玩家属性自动同步给前端和增量更新玩家数据到数据库的功能,这也是现在很多游戏服务器的优化方向,在引擎层面去解决数据同步和数据持久化,数据发生变化了业务层不需要关心怎么去同步给前端。由于游戏过程中玩家每个业务中玩家数据更改的量其实是很少
- JAVA JSON的解析
darkranger
java
// {
// “Total”:“条数”,
// Code: 1,
//
// “PaymentItems”:[
// {
// “PaymentItemID”:”支款单ID”,
// “PaymentCode”:”支款单编号”,
// “PaymentTime”:”支款日期”,
// ”ContractNo”:”合同号”,
//
- POJ-1273-Drainage Ditches
aijuans
ACM_POJ
POJ-1273-Drainage Ditches
http://poj.org/problem?id=1273
基本的最大流,按LRJ的白书写的
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
#define INF 0x7fffffff
int ma
- 工作流Activiti5表的命名及含义
atongyeye
工作流Activiti
activiti5 - http://activiti.org/designer/update在线插件安装
activiti5一共23张表
Activiti的表都以ACT_开头。 第二部分是表示表的用途的两个字母标识。 用途也和服务的API对应。
ACT_RE_*: 'RE'表示repository。 这个前缀的表包含了流程定义和流程静态资源 (图片,规则,等等)。
A
- android的广播机制和广播的简单使用
百合不是茶
android广播机制广播的注册
Android广播机制简介 在Android中,有一些操作完成以后,会发送广播,比如说发出一条短信,或打出一个电话,如果某个程序接收了这个广播,就会做相应的处理。这个广播跟我们传统意义中的电台广播有些相似之处。之所以叫做广播,就是因为它只负责“说”而不管你“听不听”,也就是不管你接收方如何处理。另外,广播可以被不只一个应用程序所接收,当然也可能不被任何应
- Spring事务传播行为详解
bijian1013
javaspring事务传播行为
在service类前加上@Transactional,声明这个service所有方法需要事务管理。每一个业务方法开始时都会打开一个事务。
Spring默认情况下会对运行期例外(RunTimeException)进行事务回滚。这
- eidtplus operate
征客丶
eidtplus
开启列模式: Alt+C 鼠标选择 OR Alt+鼠标左键拖动
列模式替换或复制内容(多行):
右键-->格式-->填充所选内容-->选择相应操作
OR
Ctrl+Shift+V(复制多行数据,必须行数一致)
-------------------------------------------------------
- 【Kafka一】Kafka入门
bit1129
kafka
这篇文章来自Spark集成Kafka(http://bit1129.iteye.com/blog/2174765),这里把它单独取出来,作为Kafka的入门吧
下载Kafka
http://mirror.bit.edu.cn/apache/kafka/0.8.1.1/kafka_2.10-0.8.1.1.tgz
2.10表示Scala的版本,而0.8.1.1表示Kafka
- Spring 事务实现机制
BlueSkator
spring代理事务
Spring是以代理的方式实现对事务的管理。我们在Action中所使用的Service对象,其实是代理对象的实例,并不是我们所写的Service对象实例。既然是两个不同的对象,那为什么我们在Action中可以象使用Service对象一样的使用代理对象呢?为了说明问题,假设有个Service类叫AService,它的Spring事务代理类为AProxyService,AService实现了一个接口
- bootstrap源码学习与示例:bootstrap-dropdown(转帖)
BreakingBad
bootstrapdropdown
bootstrap-dropdown组件是个烂东西,我读后的整体感觉。
一个下拉开菜单的设计:
<ul class="nav pull-right">
<li id="fat-menu" class="dropdown">
- 读《研磨设计模式》-代码笔记-中介者模式-Mediator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
* 中介者模式(Mediator):用一个中介对象来封装一系列的对象交互。
* 中介者使各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变它们之间的交互。
*
* 在我看来,Mediator模式是把多个对象(
- 常用代码记录
chenjunt3
UIExcelJ#
1、单据设置某行或某字段不能修改
//i是行号,"cash"是字段名称
getBillCardPanelWrapper().getBillCardPanel().getBillModel().setCellEditable(i, "cash", false);
//取得单据表体所有项用以上语句做循环就能设置整行了
getBillC
- 搜索引擎与工作流引擎
comsci
算法工作搜索引擎网络应用
最近在公司做和搜索有关的工作,(只是简单的应用开源工具集成到自己的产品中)工作流系统的进一步设计暂时放在一边了,偶然看到谷歌的研究员吴军写的数学之美系列中的搜索引擎与图论这篇文章中的介绍,我发现这样一个关系(仅仅是猜想)
-----搜索引擎和流程引擎的基础--都是图论,至少像在我在JWFD中引擎算法中用到的是自定义的广度优先
- oracle Health Monitor
daizj
oracleHealth Monitor
About Health Monitor
Beginning with Release 11g, Oracle Database includes a framework called Health Monitor for running diagnostic checks on the database.
About Health Monitor Checks
Health M
- JSON字符串转换为对象
dieslrae
javajson
作为前言,首先是要吐槽一下公司的脑残编译部署方式,web和core分开部署本来没什么问题,但是这丫居然不把json的包作为基础包而作为web的包,导致了core端不能使用,而且我们的core是可以当web来用的(不要在意这些细节),所以在core中处理json串就是个问题.没办法,跟编译那帮人也扯不清楚,只有自己写json的解析了.
- C语言学习八结构体,综合应用,学生管理系统
dcj3sjt126com
C语言
实现功能的代码:
# include <stdio.h>
# include <malloc.h>
struct Student
{
int age;
float score;
char name[100];
};
int main(void)
{
int len;
struct Student * pArr;
int i,
- vagrant学习笔记
dcj3sjt126com
vagrant
想了解多主机是如何定义和使用的, 所以又学习了一遍vagrant
1. vagrant virtualbox 下载安装
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
查看安装在命令行输入vagrant
2.
- 14.性能优化-优化-软件配置优化
frank1234
软件配置性能优化
1.Tomcat线程池
修改tomcat的server.xml文件:
<Connector port="8080" protocol="HTTP/1.1" connectionTimeout="20000" redirectPort="8443" maxThreads="1200" m
- 一个不错的shell 脚本教程 入门级
HarborChung
linuxshell
一个不错的shell 脚本教程 入门级
建立一个脚本 Linux中有好多中不同的shell,但是通常我们使用bash (bourne again shell) 进行shell编程,因为bash是免费的并且很容易使用。所以在本文中笔者所提供的脚本都是使用bash(但是在大多数情况下,这些脚本同样可以在 bash的大姐,bourne shell中运行)。 如同其他语言一样
- Spring4新特性——核心容器的其他改进
jinnianshilongnian
spring动态代理spring4依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- Linux设置tomcat开机启动
liuxingguome
tomcatlinux开机自启动
执行命令sudo gedit /etc/init.d/tomcat6
然后把以下英文部分复制过去。(注意第一句#!/bin/sh如果不写,就不是一个shell文件。然后将对应的jdk和tomcat换成你自己的目录就行了。
#!/bin/bash
#
# /etc/rc.d/init.d/tomcat
# init script for tomcat precesses
- 第13章 Ajax进阶(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Troubleshooting Crystal Reports off BW
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Troubleshooting+Crystal+Reports+off+BW#TroubleshootingCrystalReportsoffBW-TracingBOE
Quite useful, especially this part:
SAP BW connectivity
For t
- Java开发熟手该当心的11个错误
tomcat_oracle
javajvm多线程单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 正则表达式大全
yang852220741
html编程正则表达式
今天向大家分享正则表达式大全,它可以大提高你的工作效率
正则表达式也可以被当作是一门语言,当你学习一门新的编程语言的时候,他们是一个小的子语言。初看时觉得它没有任何的意义,但是很多时候,你不得不阅读一些教程,或文章来理解这些简单的描述模式。
一、校验数字的表达式
数字:^[0-9]*$
n位的数字:^\d{n}$
至少n位的数字:^\d{n,}$
m-n位的数字:^\d{m,n}$