- 景联文科技数据处理平台:支持高质量图像标注服务
景联文科技
人工智能科技计算机视觉
图像标注是计算机视觉领域中不可或缺的一环,它通过为图像添加标签来帮助机器学习算法理解图像内容。这一过程对于创建高质量的训练数据集至关重要,使得AI模型能够准确地识别和分类现实世界中的物体。常见的图像标注类型:边界框标注:这是最常用的标注方式之一,通常用于物体检测任务。通过绘制矩形框来确定图像中目标物体的位置,可以是二维或三维形式。分割标注:包括语义分割(同一类别的所有实例被视为整体)和实例分割(每
- Python实战:解析labelme标注数据——如何将数据转换为COCO格式
程序员杨弋
Python全栈工程师学习指南python开发语言
在计算机视觉中,标注数据是非常重要的,而Labelme是一个简单易用的自由标注工具,被广泛应用于图像语义分割、目标检测、实例分割等领域,然而标注数据并不总是以我们需要的格式存在,因此需要进行适当的转换,本文将详细介绍如何将Labelme标注数据转换为COCO格式。首先需要安装相关的Python库,包括labelme、numpy、matplotlib、pillow等,在安装完成后设置数据路径,并读取
- 计算机视觉四大任务模型汇总
Zero_one_ws
《神经网络与深度学习》理论计算机视觉人工智能深度学习图像分类图像目标检测目标分割关键点检测
计算机视觉中有四大核心任务:1-分类任务、2-目标检测任务、3-目标分割任务和4-关键点检测任务文章1:一文读懂计算机视觉4大任务文章2:图像的目标分割任务:语义分割和实例分割不同任务之间相关但不完全相同,因此不同的任务最好选择相应的模型,话不多说,看表:(注:表中github链接并不一定是模型的正式版本,只是本文用于展示模型的网络结构和应用)1-分类任务模型序号模型ipynb模型的github链
- 【语义分割专题文章】
BoostingIsm
Segmentationpython
本栏聚焦在语义分割的相关算法,专栏内文章的代码均已实现。一、数据篇【遥感】【道路】篇:【语义分割】【专题系列】一、MassachusettsRoadsDataset马萨诸塞州道路数据集获取二、CNN篇Unet(2015):【语义分割】【专题系列】二、Unet语义分割代码实战PSPNet(2017):【语义分割】【专题系列】三、PSPNet语义分割代码实战Linknet(2017)FPN(Featu
- 深度学习语义分割实战:ResNet 与 ViT 结合的模型解析
高山仰星
深度学习
1.引言语义分割是计算机视觉中的重要任务,其目标是将输入图像中的每个像素分类到特定的类别。本项目结合了ResNet(ResidualNetwork)和ViT(VisionTransformer),构建了高性能的语义分割模型。本文将详细解析该模型的架构、训练流程及其应用。2.语义分割模型解析本项目采用ResNet和ViT结合的方式进行语义分割,并使用CBAM注意力机制增强特征提取能力。涉及的核心文件
- python工具方法 19 语义分割结果转labelme标注(可用于大图裁剪)
万里鹏程转瞬至
python工具方法labelme语义分割opencvpng转labelme标注
将语义分割结果进行转换为labelme标注后,可用再次进行调整,然后重新生成标注数据。此外,对于一些实例分割的coco数据,也可以将img和mask裁剪成小图后,重新利用这份代码重新生成标签绘图,然后再转coco数据。语义分割结果转labelme标注,本质上是利用opencv的多边形拟合功能,在进行拟合时发现对于中空图形的孔洞区域会拟合出背景区域的多边形,因此需要对背景区域进行计算区分,此代码生成
- 使用U-Net处理Postdam数据集进行语义分割任务 如何从准备数据到训练和评估一个基于U-Net的模型。训练使用遥感影像分析研究语义分割数据集
计算机C9硕士_算法工程师
语义分割unet
使用U-Net处理Postdam数据集进行语义分割任务如何从准备数据到训练和评估一个基于U-Net的模型。训练使用遥感影像分析研究数据集文章目录1.安装依赖2.数据准备创建自定义的数据加载器3.模型定义4.训练模型5.可视化预测结果Postdam数据集遥感影像-语义分割数据集:Postdam数据集像素大小512*512训练图片为.tif标签图片为.tif数据集(train3678张val920张)
- MobileNetV2: Inverted Residuals and Linear Bottlenecks
TAICHIFEI
Paper人工智能计算机视觉
Link:https://arxiv.org/abs/1801.04381这篇文章是一篇关于MobileNetV2的学术论文,主要介绍了MobileNetV2的架构设计及其在图像分类、目标检测和语义分割任务中的应用。以下是对这些核心内容的简要概述:MobileNetV2架构设计:提出了一种新的神经网络模块——倒残差结构(InvertedResiduals),其中的快捷连接位于瓶颈层之间。使用轻量级
- 基于深度学习的物体分割技术:从理论到实践
人工智能_SYBH
深度学习人工智能神经网络机器学习lstm
1.引言物体分割(ObjectSegmentation)是计算机视觉中的一项核心任务,其目标是将图像中的不同物体或区域分离出来,通常分为语义分割和实例分割两种类型。随着深度学习的迅猛发展,尤其是卷积神经网络(CNN)的应用,物体分割技术已取得了显著的进展。它被广泛应用于医学影像分析、自动驾驶、视频监控、机器人感知等领域。在本篇博客中,我们将深入探讨基于深度学习的物体分割技术,介绍其发展历程、核心原
- 深度学习模型在汽车自动驾驶领域的应用
eso1983
深度学习汽车自动驾驶
汽车自动驾驶是一个高度复杂的系统,深度学习和计算技术在其中扮演核心角色。今天简单介绍一下自动驾驶领域常用的深度学习模型及其计算原理的解析。1.深度学习模型分类及应用场景1.1视觉感知模型CNN(卷积神经网络)应用:图像分类、物体检测(车辆、行人、交通标志)、语义分割(道路、车道线)。典型模型:YOLO:实时目标检测,低延迟特性适合自动驾驶。MaskR-CNN:结合检测与像素级分割,用于精确场景理解
- 使用小尺寸的图像进行逐像素语义分割训练,出现样本不均衡训练效果问题
司南锤
深度学习遥感计算机视觉人工智能机器学习
在使用小尺寸图像进行逐像素语义分割训练时,确实可能出现样本不均衡问题,且这种问题可能比大尺寸图像更显著。1.小尺寸图像如何加剧样本不均衡?(1)局部裁剪导致类别分布偏差问题:遥感图像中某些类别(如道路、建筑)可能稀疏分布。小尺寸裁剪后,部分训练样本可能完全不含某些类别(例如一块纯农田的补丁),导致模型对这些类别缺乏学习机会。示例:原图中“道路”占比5%,若裁剪为256x256的小图,部分小图中可能
- 参考图像分割Referring Image Segmentation(RIS)和开放词汇语义分割Open Vocabulary Semantic Segmentation
余弦的倒数
深度学习CV笔记计算机视觉深度学习
一、参考图像分割基本概念:ReferringImageSegmentation(RIS)是一种图像分割技术,旨在根据自然语言表达来标记图像或视频中表示对象实例的像素。也就是根据自然语言描述来实现图像分割。旨在根据自然语言表达来标记图像或视频中的特定区域。在给定描述区域的自然语言文本的情况下,RIS需要在图像中找到相应的区域。这个任务是众所周知的具有挑战性的视觉和语言任务之一。RIS需要收集目标区域
- 【代码复现】ResUNet++进行语义分割(含图像切片预处理)
Cpdr
模型代码解读深度学习人工智能
文章目录参考资料1.preprocess.py1.1.参数声明1.1.1.执行命令的形参1.1.2.代码中的参数声明2.train.py2.1.参数声明2.2.main函数(不包括训练阶段)2.2.1参数说明2.2.2.读取数据部分2.2.3.创建loaders2.3.训练阶段2.4.validation阶段3.其他相关代码3.1.model.py3.1.1.res_unet_plus.py3.1
- 深度ResUnet与ResUnet++:新一代的语义分割神器
倪澄莹George
深度ResUnet与ResUnet++:新一代的语义分割神器去发现同类优质开源项目:https://gitcode.com/在这个数据驱动的时代,深度学习模型在图像处理领域展现出了强大的潜力,尤其是在语义分割任务中。今天,我们向您推荐一个基于PyTorch实现的开源项目——DeepResUnet和ResUnet++。这两个模型源自于学术界的最新研究,旨在提高图像分割的准确性和效率。项目介绍这个开源
- NCNN推理
呆呆珝
推理框架c++人工智能
1.前言ncnn是一个高性能的神经网络前向计算框架,专门针对移动设备和嵌入式设备设计。它由腾讯优图实验室开发,旨在提供高效的神经网络推理能力,特别是在资源受限的环境中,如智能手机和嵌入式系统。ncnn被广泛应用于移动端和嵌入式设备上的各种深度学习应用,包括但不限于:图像分类/目标检测/语义分割/人脸识别/图像生成与处理2.NCNN的CMakeLists.txt编写ncnn的头文件,链接文件,静态链
- 【论文投稿】探秘计算机视觉算法:开启智能视觉新时代
小周不想卷
艾思科蓝学术会议投稿计算机视觉
目录引言一、计算机视觉算法基石:图像基础与预处理二、特征提取:视觉信息的精华萃取三、目标检测:从图像中精准定位目标四、图像分类:识别图像所属类别五、语义分割:理解图像的像素级语义六、计算机视觉算法前沿趋势与挑战引言在当今数字化浪潮中,计算机视觉宛如一颗璀璨的明珠,正深刻地改变着我们与世界的交互方式。从安防监控中的精准识别,到自动驾驶汽车的智能导航;从医疗影像的辅助诊断,到工业生产中的缺陷检测,计算
- 推荐3D UNet实现:深度学习3D体素数据语义分割的利器!
滑辰煦Marc
推荐3DUNet实现:深度学习3D体素数据语义分割的利器!去发现同类优质开源项目:https://gitcode.com/在这个快速发展的深度学习时代,3DUNet已经成为3D图像处理领域中不可或缺的工具,尤其在医疗影像分析和3D物体识别等任务上展现出强大的潜力。这个开源项目为我们提供了一个高效、灵活的3DUNet实现,支持Tensorflow、PyTorch和Chainer三种主流深度学习框架。
- 个人学习笔记7-6:动手学深度学习pytorch版-李沐
浪子L
深度学习深度学习笔记计算机视觉python人工智能神经网络pytorch
#人工智能##深度学习##语义分割##计算机视觉##神经网络#计算机视觉13.11全卷积网络全卷积网络(fullyconvolutionalnetwork,FCN)采用卷积神经网络实现了从图像像素到像素类别的变换。引入l转置卷积(transposedconvolution)实现的,输出的类别预测与输入图像在像素级别上具有一一对应关系:通道维的输出即该位置对应像素的类别预测。13.11.1构造模型下
- 景联文科技:专业数据标注公司,推动AI技术革新
景联文科技
人工智能
数据标注作为AI技术发展的重要支撑,对于训练高质量的机器学习模型以及推动应用领域的创新具有不可替代的作用。景联文科技作为专业的数据标注公司,致力于提供专业的数据标注服务,帮助客户解决AI链条中的数据处理难题,共同推动人工智能技术的进步与发展。一站式数据标注服务景联文科技提供一站式的数据标注服务,涵盖从图像、视频、音频到文本等多种数据类型。•图像标注:对象检测、语义分割、关键点标注、多边形标注等。•
- Python(PyTorch和TensorFlow)图像分割卷积网络导图(生物医学)
亚图跨际
交叉知识Python生物医学脑肿瘤图像皮肤病变多模态医学图像多尺度特征生物医学腹部胰腺图像病灶边界气胸图像
要点语义分割图像三层分割椭圆图像脑肿瘤图像分割动物图像分割皮肤病变分割多模态医学图像多尺度特征生物医学肖像多类和医学分割通用图像分割模板腹部胰腺图像分割分类注意力网络病灶边界分割气胸图像分割Python生物医学图像卷积网络该网络由收缩路径和扩展路径组成,收缩路径是一种典型的卷积网络,由重复应用卷积组成,每个卷积后跟一个整流线性单元(ReLU)和一个最大池化操作。在收缩过程中,空间信息减少,而特征信
- 学习记录——语义分割和实例分割的标签结构
落叶击球
学习笔记学习人工智能
语义分割:一张样本,生成一张掩码图像标签。灰度图像,背景亮度为0,每个目标根据分类赋予不同亮度——1,2,3......实现像素级的类别区分,但无法区分个体。实例分割:原理:一张样本,生成一个多通道的Mat矩阵,也就是多张掩码图像叠在一起。每张掩码图负责存储一个类别的目标,亮度只有0和1,通过通道号区分每个类别。同时,每张掩码图内,每个目标拥有ID号(通过增加一个维度实现),负责区分一个类别中的每
- 语义分割训练精度计算
南太湖小蚂蚁
人工智能深度学习人工智能
语义分割训练的output结果一般是[batch_size,num_classes,width,height]这样的形式,而label的结果一般是[batch_size,width,height],类似如下形状,outputs:[4,6,480,320],而真值label:[4,480,320]。由于维度不同,无法直接比较,所以这两者要比较就要采取一点方法。output里面每个类型都有一个值,要取
- 语义分割笔记
Wils0nEdwards
笔记深度学习计算机视觉
在语义分割任务中,提升自制数据集上baselinemodel的平均交并比(mIoU)和平均精度(mAcc)的难度取决于多个因素。以下是一些关键因素及其对难度的影响:数据集质量:标注质量:高质量的标注对于训练有效的模型至关重要。如果标注存在错误或不一致,模型的性能会受到影响。样本数量:较大的数据集通常可以提升模型的泛化能力,但收集和标注大量样本是一个费时费力的过程。数据多样性:如果数据集包含多样化的
- 遥感影像-语义分割数据集:GID数据集详细介绍及训练样本处理流程
GIS潮流
计算机视觉人工智能机器学习
GID数据集:大规模高分卫星土地覆盖数据集原始数据集详情简介:GID是基于我国Gaofen-2卫星数据而构建的大规模高分辨率遥感图像土地覆盖数据集。GID数据集分为大规模分类集(GID-5)和精细土地覆盖集(GID-15)两个部分。大规模分类集(GID-5)包含建筑、农田、森林、草地和水域等5个土地覆盖类别,共计150景像素级标注的Gaofen-2卫星遥感图像。其中,训练集为120景图像,验证集为
- 遥感影像-语义分割数据集:Vaihingen数据集详细介绍及训练样本处理流程
GIS潮流
计算机视觉
原始数据集详情Vaihingen是一个相对较小的村庄,有许多独立的建筑和小的多层建筑。KeyValue卫星类型未知覆盖区域一个相对较小的村庄,有许多独立的建筑和小的多层建筑-Vaihingen场景城市分辨率5cm数量38张单张尺寸6000*6000原始影像位深8位标签图片位深8位原始影像通道数三通道标签图片通道数三通道官网https://www.isprs.org/education/benchm
- Atrous Spatial Pyramid Pooling(ASPP)空洞空间卷积池化金字塔
m0_55576290
深度学习人工智能
文章目录概要整体架构流程演化过程与代码实现概要ASPP主要用于解决语义分割任务中的尺度问题。在语义分割任务中,需要将图像中的每个像素分类到不同的类别中,而不同物体和结构在图像中可能有不同的尺度。传统的卷积神经网络在提取语义信息时,只能通过固定尺度的卷积核进行操作,因此无法很好地捕捉到不同尺度下的上下文信息。ASPP通过在网络中引入多个并行的分支,每个分支使用不同尺度的空洞卷积和池化操作,来捕获不同
- 深度学习,创新点,模型改进
揽星河@
计算机视觉机器学习深度学习python人工智能
深度学习添加创新点①在现有模型上添加自己的创新点②或者混合多个模型等等③提供创新点添加各种注意力机制,各种模型block。机器学习,目标检测,目标识别,语义分割,GAN,CNN等(只要是深度学习均可)编程语言限于Python,pytorch欢迎大家咨询~
- 【深度学习】COCO API源码解读
CS_Zero
深度学习人工智能
COCOAPI从C、cython,到PythonAPI:实现语义分割标注mask的解析,从具体实现cocoapi/common/maskApi.hcocoapi/common/maskApi.c到Cython封装实现pycocotools._maskcocoapi/PythonAPI/pycocotools/_mask.pyx#distutils:language=c#distutils:sour
- 2020-04-04
奋斗中的小强
SAN:Scale-AwareNetworkforSemanticSegmentationofHigh-ResolutionAerialImages高分辨率航空图像具有广泛的应用,如军事探索和城市规划。语义分割是高分辨率航空图像分析中广泛使用的一种基本方法。然而,高分辨率航空影像地物具有尺度不一致的特征,这一特征往往会导致预测结果的不确定性。为了解决这个问题,我们提出了一个新的尺度感知模块(SAM
- 计算机设计大赛 深度学习人体语义分割在弹幕防遮挡上的实现 - python
iuerfee
python
文章目录1前言1课题背景2技术原理和方法2.1基本原理2.2技术选型和方法3实例分割4实现效果5最后1前言优质竞赛项目系列,今天要分享的是深度学习人体语义分割在弹幕防遮挡上的应用该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!学长这里给一个题目综合评分(每项满分5分)难度系数:3分工作量:3分创新点:3分更多资料,项目分享:https://gitee.com/dancheng-senior/p
- 集合框架
天子之骄
java数据结构集合框架
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- Table Driven(表驱动)方法实例
bijian1013
javaenumTable Driven表驱动
实例一:
/**
* 驾驶人年龄段
* 保险行业,会对驾驶人的年龄做年龄段的区分判断
* 驾驶人年龄段:01-[18,25);02-[25,30);03-[30-35);04-[35,40);05-[40,45);06-[45,50);07-[50-55);08-[55,+∞)
*/
public class AgePeriodTest {
//if...el
- Jquery 总结
cuishikuan
javajqueryAjaxWebjquery方法
1.$.trim方法用于移除字符串头部和尾部多余的空格。如:$.trim(' Hello ') // Hello2.$.contains方法返回一个布尔值,表示某个DOM元素(第二个参数)是否为另一个DOM元素(第一个参数)的下级元素。如:$.contains(document.documentElement, document.body); 3.$
- 面向对象概念的提出
麦田的设计者
java面向对象面向过程
面向对象中,一切都是由对象展开的,组织代码,封装数据。
在台湾面向对象被翻译为了面向物件编程,这充分说明了,这种编程强调实体。
下面就结合编程语言的发展史,聊一聊面向过程和面向对象。
c语言由贝尔实
- linux网口绑定
被触发
linux
刚在一台IBM Xserver服务器上装了RedHat Linux Enterprise AS 4,为了提高网络的可靠性配置双网卡绑定。
一、环境描述
我的RedHat Linux Enterprise AS 4安装双口的Intel千兆网卡,通过ifconfig -a命令看到eth0和eth1两张网卡。
二、双网卡绑定步骤:
2.1 修改/etc/sysconfig/network
- XML基础语法
肆无忌惮_
xml
一、什么是XML?
XML全称是Extensible Markup Language,可扩展标记语言。很类似HTML。XML的目的是传输数据而非显示数据。XML的标签没有被预定义,你需要自行定义标签。XML被设计为具有自我描述性。是W3C的推荐标准。
二、为什么学习XML?
用来解决程序间数据传输的格式问题
做配置文件
充当小型数据库
三、XML与HTM
- 为网页添加自己喜欢的字体
知了ing
字体 秒表 css
@font-face {
font-family: miaobiao;//定义字体名字
font-style: normal;
font-weight: 400;
src: url('font/DS-DIGI-e.eot');//字体文件
}
使用:
<label style="font-size:18px;font-famil
- redis范围查询应用-查找IP所在城市
矮蛋蛋
redis
原文地址:
http://www.tuicool.com/articles/BrURbqV
需求
根据IP找到对应的城市
原来的解决方案
oracle表(ip_country):
查询IP对应的城市:
1.把a.b.c.d这样格式的IP转为一个数字,例如为把210.21.224.34转为3524648994
2. select city from ip_
- 输入两个整数, 计算百分比
alleni123
java
public static String getPercent(int x, int total){
double result=(x*1.0)/(total*1.0);
System.out.println(result);
DecimalFormat df1=new DecimalFormat("0.0000%");
- 百合——————>怎么学习计算机语言
百合不是茶
java 移动开发
对于一个从没有接触过计算机语言的人来说,一上来就学面向对象,就算是心里上面接受的了,灵魂我觉得也应该是跟不上的,学不好是很正常的现象,计算机语言老师讲的再多,你在课堂上面跟着老师听的再多,我觉得你应该还是学不会的,最主要的原因是你根本没有想过该怎么来学习计算机编程语言,记得大一的时候金山网络公司在湖大招聘我们学校一个才来大学几天的被金山网络录取,一个刚到大学的就能够去和
- linux下tomcat开机自启动
bijian1013
tomcat
方法一:
修改Tomcat/bin/startup.sh 为:
export JAVA_HOME=/home/java1.6.0_27
export CLASSPATH=$CLASSPATH:$JAVA_HOME/lib/tools.jar:$JAVA_HOME/lib/dt.jar:.
export PATH=$JAVA_HOME/bin:$PATH
export CATALINA_H
- spring aop实例
bijian1013
javaspringAOP
1.AdviceMethods.java
package com.bijian.study.spring.aop.schema;
public class AdviceMethods {
public void preGreeting() {
System.out.println("--how are you!--");
}
}
2.beans.x
- [Gson八]GsonBuilder序列化和反序列化选项enableComplexMapKeySerialization
bit1129
serialization
enableComplexMapKeySerialization配置项的含义
Gson在序列化Map时,默认情况下,是调用Key的toString方法得到它的JSON字符串的Key,对于简单类型和字符串类型,这没有问题,但是对于复杂数据对象,如果对象没有覆写toString方法,那么默认的toString方法将得到这个对象的Hash地址。
GsonBuilder用于
- 【Spark九十一】Spark Streaming整合Kafka一些值得关注的问题
bit1129
Stream
包括Spark Streaming在内的实时计算数据可靠性指的是三种级别:
1. At most once,数据最多只能接受一次,有可能接收不到
2. At least once, 数据至少接受一次,有可能重复接收
3. Exactly once 数据保证被处理并且只被处理一次,
具体的多读几遍http://spark.apache.org/docs/lates
- shell脚本批量检测端口是否被占用脚本
ronin47
#!/bin/bash
cat ports |while read line
do#nc -z -w 10 $line
nc -z -w 2 $line 58422>/dev/null2>&1if[ $?-eq 0]then
echo $line:ok
else
echo $line:fail
fi
done
这里的ports 既可以是文件
- java-2.设计包含min函数的栈
bylijinnan
java
具体思路参见:http://zhedahht.blog.163.com/blog/static/25411174200712895228171/
import java.util.ArrayList;
import java.util.List;
public class MinStack {
//maybe we can use origin array rathe
- Netty源码学习-ChannelHandler
bylijinnan
javanetty
一般来说,“有状态”的ChannelHandler不应该是“共享”的,“无状态”的ChannelHandler则可“共享”
例如ObjectEncoder是“共享”的, 但 ObjectDecoder 不是
因为每一次调用decode方法时,可能数据未接收完全(incomplete),
它与上一次decode时接收到的数据“累计”起来才有可能是完整的数据,是“有状态”的
p
- java生成随机数
cngolon
java
方法一:
/**
* 生成随机数
* @author
[email protected]
* @return
*/
public synchronized static String getChargeSequenceNum(String pre){
StringBuffer sequenceNum = new StringBuffer();
Date dateTime = new D
- POI读写海量数据
ctrain
海量数据
import java.io.FileOutputStream;
import java.io.OutputStream;
import org.apache.poi.xssf.streaming.SXSSFRow;
import org.apache.poi.xssf.streaming.SXSSFSheet;
import org.apache.poi.xssf.streaming
- mysql 日期格式化date_format详细使用
daizj
mysqldate_format日期格式转换日期格式化
日期转换函数的详细使用说明
DATE_FORMAT(date,format) Formats the date value according to the format string. The following specifiers may be used in the format string. The&n
- 一个程序员分享8年的开发经验
dcj3sjt126com
程序员
在中国有很多人都认为IT行为是吃青春饭的,如果过了30岁就很难有机会再发展下去!其实现实并不是这样子的,在下从事.NET及JAVA方面的开发的也有8年的时间了,在这里在下想凭借自己的亲身经历,与大家一起探讨一下。
明确入行的目的
很多人干IT这一行都冲着“收入高”这一点的,因为只要学会一点HTML, DIV+CSS,要做一个页面开发人员并不是一件难事,而且做一个页面开发人员更容
- android欢迎界面淡入淡出效果
dcj3sjt126com
android
很多Android应用一开始都会有一个欢迎界面,淡入淡出效果也是用得非常多的,下面来实现一下。
主要代码如下:
package com.myaibang.activity;
import android.app.Activity;import android.content.Intent;import android.os.Bundle;import android.os.CountDown
- linux 复习笔记之常见压缩命令
eksliang
tar解压linux系统常见压缩命令linux压缩命令tar压缩
转载请出自出处:http://eksliang.iteye.com/blog/2109693
linux中常见压缩文件的拓展名
*.gz gzip程序压缩的文件
*.bz2 bzip程序压缩的文件
*.tar tar程序打包的数据,没有经过压缩
*.tar.gz tar程序打包后,并经过gzip程序压缩
*.tar.bz2 tar程序打包后,并经过bzip程序压缩
*.zi
- Android 应用程序发送shell命令
gqdy365
android
项目中需要直接在APP中通过发送shell指令来控制lcd灯,其实按理说应该是方案公司在调好lcd灯驱动之后直接通过service送接口上来给APP,APP调用就可以控制了,这是正规流程,但我们项目的方案商用的mtk方案,方案公司又没人会改,只调好了驱动,让应用程序自己实现灯的控制,这不蛋疼嘛!!!!
发就发吧!
一、关于shell指令:
我们知道,shell指令是Linux里面带的
- java 无损读取文本文件
hw1287789687
读取文件无损读取读取文本文件charset
java 如何无损读取文本文件呢?
以下是有损的
@Deprecated
public static String getFullContent(File file, String charset) {
BufferedReader reader = null;
if (!file.exists()) {
System.out.println("getFull
- Firebase 相关文章索引
justjavac
firebase
Awesome Firebase
最近谷歌收购Firebase的新闻又将Firebase拉入了人们的视野,于是我做了这个 github 项目。
Firebase 是一个数据同步的云服务,不同于 Dropbox 的「文件」,Firebase 同步的是「数据」,服务对象是网站开发者,帮助他们开发具有「实时」(Real-Time)特性的应用。
开发者只需引用一个 API 库文件就可以使用标准 RE
- C++学习重点
lx.asymmetric
C++笔记
1.c++面向对象的三个特性:封装性,继承性以及多态性。
2.标识符的命名规则:由字母和下划线开头,同时由字母、数字或下划线组成;不能与系统关键字重名。
3.c++语言常量包括整型常量、浮点型常量、布尔常量、字符型常量和字符串性常量。
4.运算符按其功能开以分为六类:算术运算符、位运算符、关系运算符、逻辑运算符、赋值运算符和条件运算符。
&n
- java bean和xml相互转换
q821424508
javabeanxmlxml和bean转换java bean和xml转换
这几天在做微信公众号
做的过程中想找个java bean转xml的工具,找了几个用着不知道是配置不好还是怎么回事,都会有一些问题,
然后脑子一热谢了一个javabean和xml的转换的工具里,自己用着还行,虽然有一些约束吧 ,
还是贴出来记录一下
顺便你提一下下,这个转换工具支持属性为集合、数组和非基本属性的对象。
packag
- C 语言初级 位运算
1140566087
位运算c
第十章 位运算 1、位运算对象只能是整形或字符型数据,在VC6.0中int型数据占4个字节 2、位运算符: 运算符 作用 ~ 按位求反 << 左移 >> 右移 & 按位与 ^ 按位异或 | 按位或 他们的优先级从高到低; 3、位运算符的运算功能: a、按位取反: ~01001101 = 101
- 14点睛Spring4.1-脚本编程
wiselyman
spring4
14.1 Scripting脚本编程
脚本语言和java这类静态的语言的主要区别是:脚本语言无需编译,源码直接可运行;
如果我们经常需要修改的某些代码,每一次我们至少要进行编译,打包,重新部署的操作,步骤相当麻烦;
如果我们的应用不允许重启,这在现实的情况中也是很常见的;
在spring中使用脚本编程给上述的应用场景提供了解决方案,即动态加载bean;
spring支持脚本